In a rapidly changing climate, alpine plants may persist by adapting to new conditions. However, the rate at which the climate is changing might exceed the rate of adaptation through evolutionary processes in long-lived plants. Persistence may depend on phenotypic plasticity in morphology and physiology. Here we investigated patterns of leaf trait variation including leaf area, leaf thickness, specific leaf area, leaf dry matter content, leaf nutrients (C, N, P) and isotopes (δ13C and δ15N) across an elevation gradient on Gongga Mountain, Sichuan Province, China. We quantified inter- and intra-specific trait variation and the plasticity in leaf traits of selected species to experimental warming and cooling by using a reciprocal transplantation approach. We found substantial phenotypic plasticity in most functional traits where δ15N, leaf area, and leaf P showed greatest plasticity. These traits did not correspond with traits with the largest amount of intraspecific variation. Plasticity in leaf functional traits tended to enable plant populations to shift their trait values toward the mean values of a transplanted plants’ destination community, but only if that population started with very different trait values. These results suggest that leaf trait plasticity is an important mechanism for enabling plants to persist within communities and to better tolerate changing environmental conditions under climate change.
raits, broadly speaking, are measurable attributes or characteristics of organisms. Traits related to function (for example, leaf size, body mass, tooth size or growth form) are often used to understand how organisms interact with their environment and other species via key vital rates such as survival, development and reproduction 1-5. Trait-based approaches have long been used in systematics and macroevolution to delineate taxa and reconstruct ancestral morphology and function 6-8 and to link candidate genes to phentoypes 9-11. The broad appeal of the trait concept is its ability to facilitate quantitative comparisons of biological form and function. Traits also allow us to mechanistically link organismal responses to abiotic and biotic factors with measurements that are, in principle, relatively easy to capture across large numbers of individuals. For example, appropriately chosen and defined traits can help identify lineages that share similar life-history strategies for a given environmental regime 12,13. Documenting and understanding the diversity and composition of traits in ecosystems directly contributes to our understanding of organismal and ecosystem processes, functionality, productivity and resilience in the face of environmental change 14-19. In light of the multiple applications of trait data to address challenges of global significance (Box 1), a central question remains: How can we most effectively advance the synthesis of trait data within and across disciplines? In recent decades, the collection, compilation and availability of trait data for a variety of organisms has accelerated rapidly. Substantial trait databases now exist for plants 20-23 , reptiles 24,25 , invertebrates 23,26-29 , fish 30,31 , corals 32 , birds 23,33,34 , amphibians 35 , mammals 23,36-38 and fungi 23,39 , and parallel efforts are no doubt underway for other taxa. Though considerable effort has been made to quantify traits for some groups (for example, Fig. 1), substantial work remains. To develop and test theory in biodiversity science, much greater effort is needed to fill in trait data across the Tree of Life by combining and integrating data and trait collection efforts.
Studies of genetic adaptation in plant populations along elevation gradients in mountains have a long history, but there has until now been neither a synthesis of how frequently plant populations exhibit adaptation to elevation nor an evaluation of how consistent underlying trait differences across species are. We reviewed studies of adaptation along elevation gradients (i) from a meta-analysis of phenotypic differentiation of three traits (height, biomass and phenology) from plants growing in 70 common garden experiments; (ii) by testing elevation adaptation using three fitness proxies (survival, reproductive output and biomass) from 14 reciprocal transplant experiments; (iii) by qualitatively assessing information at the molecular level, from 10 genomewide surveys and candidate gene approaches. We found that plants originating from high elevations were generally shorter and produced less biomass, but phenology did not vary consistently. We found significant evidence for elevation adaptation in terms of survival and biomass, but not for reproductive output. Variation in phenotypic and fitness responses to elevation across species was not related to life history traits or to environmental conditions. Molecular studies, which have focussed mainly on loci related to plant physiology and phenology, also provide evidence for adaptation along elevation gradients. Together, these studies indicate that genetically based trait differentiation and adaptation to elevation are widespread in plants. We conclude that a better understanding of the mechanisms underlying adaptation, not only to elevation but also to environmental change, will require more studies combining the ecological and molecular approaches.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.