The concepts of generalized higher derivations, Jordan generalized higher derivations, and Jordan generalized triple higher derivations on Γ-ring M into ΓM-modules X are presented. We prove that every Jordan generalized higher derivation of Γ-ring M into 2-torsion free ΓM-module X, such that aαbβc=aβbαc, for all a, b, c M and α,βΓ, is Jordan generalized triple higher derivation of M into X.
In this study, we introduce and study the concepts of generalized ( , )-reverse derivation, Jordan generalized ( , )-reverse derivation, and Jordan generalized triple ( , )-reverse derivation from Γ-semiring S into ΓS-module X. The most important findings of this paper are as follows:
If S is Γ-semiring and X is ΓS-module, then every Jordan generalized ( , )- reverse derivations from S into X associated with Jordan ( , )-reverse derivation d from S into X is ( , )-reverse derivation from S into X.
Let R be an associative ring. The essential purpose of the present paper is to introduce the concept of generalized commuting mapping of R. Let U be a non-empty subset of R, a mapping : R R is called a generalized commuting mapping on U if there exist a mapping :R R such that =0, holds for all U. Some results concerning the new concept are presented.
The intention of this paper is to find the exact and split sequences of the sub modules of FW6-second and third pair of hooks representation modules, when F be a field of characteristic 0 . This intention is revealing by presenting the main results theorems (3-1) and (3-2), where we gave two of this kind of sequences.
0 0
Here we refer that depending on the structural constructing of the elements (modules) of these sequences or it‘s sub modules by counting the dimensions was essential for proving these theorems.
The propose of this paper is to present some results concerning the symmetric generalized Biderivations when their traces satisfies some certain conditions on an ideal of prime and semiprime rings. We show that a semiprime ring R must have a nontrivial central ideal if it admits appropriate traces of symmetric generalized Biderivations, under similar hypothesis we prove commutativity in prime rings.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.