The first example of direct structural characterization of polyaromatic ions by coupling a Fourier transform ion cyclotron resonance mass spectrometer with an infrared free-electron laser is presented. Measurement of the IR spectra of selectively prepared ionic reactive intermediates is allowed by the association of the high peak power and wide tunability of the laser with the flexibility of the spectrometer, where several mass selection and ion reaction steps can be combined, as demonstrated in the case of iron cation complexes of hydrocarbons. The present experimental setup opens the way to understanding chemical reaction paths.
Abstract.A commercial low-resolution (0.5 cm −1 ) Fourier Transform Spectrometer (FTS) has been modified and is used for determining the total column XCO 2 of the atmosphere by analysing direct solar radiation. The spectrometer has a small home-built solar tracker attached, so that it is a ready-touse instrument. The results are validated with temporally coinciding on-site measurements taken with a high-resolution Total Carbon Column Observing Network (TCCON) FTIR spectrometer. For the whole comparison period of 5 months (26 measurement days) an agreement with TCCON results of (0.12 ± 0.08) % is achieved. This makes the spectrometer a promising candidate for a low-cost addition to the TCCON core FTIR sites, especially suitable for locations with limited infrastructure. An impressive mechanical and thermal stability is proved, enabling the spectrometer for use in field campaigns and for the monitoring of local sources.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.