Afforestation and forest management are considered to be key instruments in mitigating climate change. Here we show that since 1750, in spite of considerable afforestation, wood extraction has led to Europe's forests accumulating a carbon debt of 3.1 petagrams of carbon. We found that afforestation is responsible for an increase of 0.12 watts per square meter in the radiative imbalance at the top of the atmosphere, whereas an increase of 0.12 kelvin in summertime atmospheric boundary layer temperature was mainly caused by species conversion. Thus, two and a half centuries of forest management in Europe have not cooled the climate. The political imperative to mitigate climate change through afforestation and forest management therefore risks failure, unless it is recognized that not all forestry contributes to climate change mitigation.
In light of daunting global sustainability challenges such as climate change, biodiversity loss and food security, improving our understanding of the complex dynamics of the Earth system is crucial.However, large knowledge gaps related to the effects of land management persist, in particular those human-induced changes in terrestrial ecosystems that do not result in land cover conversions. Here we review the current state of knowledge of ten common land management activities for their biogeochemical and biophysical impacts, the level of process-understanding and data availability. Our review shows that ca. one tenth of the ice free land surface is under intense human management, half under medium and one fifth under extensive management. Based on our review, we cluster these ten management activities into three groups: (1) management activities for which datasets are available, and for which a good knowledge base exists (cropland harvest and irrigation); (2) management activities for which sufficient knowledge on biogeochemical and biophysical effects exists but robust global datasets are lacking (forest harvest, tree species selection, grazing and mowing harvest, N-fertilization); and (3) land management practices with severe data gaps concomitant with an unsatisfactory level of process understanding (crop species selection, artificial wetland drainage, tillage and fire management and crop residue management, an element of crop harvest). Although we identify multiple impediments to progress, we conclude that the current status of process understanding and data availability is sufficient to advance with incorporating management in e.g. Earth System or Dynamic Vegetation models in order to provide a systematic assessment of their role in the Earth system. This review contributes to a strategic prioritization of research efforts across multiple disciplines, including land system research, ecological research and Earth system modelling.
The Paris Agreement advances forest management as one of the pathways to halt climate warming through carbon dioxide (CO 2 ) emission reduction 1 . The climate benefits from carbon sequestration from forest management may, however, be reinforced, counteracted, or even offset by concurrent management-induced changes in surface albedo, surface roughness, biogenic volatile organic compound emissions, transpiration, and sensible heat flux 2 – 4 . Forest management could, thus, offset CO 2 emissions without halting global temperature rise. It remains, therefore, to be confirmed that sustainable forest management portfolios for the end of the 21 st -century for Europe would comply with the Paris Agreement, i.e., reduce the growth rate of atmospheric CO 2 , reduce the radiative imbalance at the top of the atmosphere, and neither increase the near-surface air temperature nor decrease precipitation. Here we show that a spatially-optimized portfolio that maximises the carbon sink through carbon sequestration, wood use and product and energy substitution, reduces the growth rate of atmospheric CO 2 but does not meet any of the other criteria. The portfolios that maximise the carbon sink or forest albedo pass only one, albeit different, criterion. Managing the European forests with the objective to reduce near-surface air temperature, on the other hand, will also reduce the atmospheric CO 2 growth rate, thus meeting two out of four criteria. Our results demonstrate that if present-day forest cover is sustained, the additional climate benefits through forest management would be modest and local rather than global. Based on these findings we argue that if adaptation would require large-scale changes in species composition and silvicultural systems over Europe 5 , 6 , these changes could be implemented with little unintended climate effects.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.