A new class of substituted 1-phenyl-3-piperazinyl-2-propanones with antimuscarinic activity is reported. As part of a structure-activity relationship study of this class, various structural modifications, particularly ones involving substitution of position 1 and the terminal piperazine nitrogen, were investigated. The objective of this study was to derive new antimuscarinic agents with potential utility in treating urinary incontinence associated with bladder muscle instability. These compounds were examined for M1, M2, and M3 muscarinic receptor selectivity in isolated tissue assays and for in vivo effects on urinary bladder contraction, mydriasis, and salivation in guinea pigs. Potency and selectivity in these assays were influenced most notably by the nature of the substituent group on the terminal nitrogen of the piperazine moiety. Benzyl substitution was particularly advantageous in producing compounds with functional M3 receptor (smooth muscle) and bladder selectivity; it provided several candidates for clinical study. In vivo, 3-(4-benzyl-piperazinyl)-1-cyclobutyl-1-hydroxy-1-phenyl-2-propanone (24) demonstrated 11- and 37-fold separations in its effect on bladder function versus mydriatic and salivation responses, respectively. The corresponding 2-chlorobenzyl derivative 25 was more than 178-fold selective for M3 versus M1 and M2 muscarinic receptors. 3-(4-Benzylpiperazinyl)-1,1-diphenyl-1-hydroxy-2-propanone (51) was 18-fold selective for M3 versus M1 and 242-fold selective for M3 versus M2 receptors. It was also selective in guinea pigs, where it displayed 20- and 41-fold separations between bladder function and effect on mydriasis and salivation, respectively. In general, the results of this study are consistent with the proposition that the described piperazinylpropanones interact with muscarcinic receptors in a hydrogen-bonded form that presents a conformation similar to that apparently adopted by classical antimuscarinic agents.
Oxybutynin chloride [4-(diethylamino)-2-butynyl alpha-cyclohexyl-alpha-hydroxybenzeneacetate hydrochloride, Ditropan] is widely used for the relief of symptoms in neurogenic bladder. This is a result of its combined anticholinergic, antispasmodic, and local anesthetic activities. In a study directed toward development of agents possessing the beneficial properties of oxybutynin, but having a longer duration of action, a series of metabolically more stable keto analogues of the parent ester, i.e. substituted 7-amino-1-hydroxy-5-heptyn-2-ones along with some analogues and derivatives, was prepared and evaluated for in vitro and in vivo antimuscarinic action in guinea pig preparations. Several members of the series were potent antimuscarinics having a longer duration of activity than that of oxybutynin in a guinea pig cystometrogram model. On the basis of its in vitro and in vivo antimuscarinic activity, coupled with a 5-fold greater duration of action than that of oxybutynin, 1-cyclobutyl-7-(dimethylamino)-1-hydroxy-1-phenyl-5-heptyn-2-one (14b) was selected for clinical evaluation.
A series of 3-quinuclidinyl atrolactate [3-(1-azabicyclo[2.2.2]octyl) 2-hydroxy-2-phenylpropionate, QNA] derivatives in which the methyl group of the parent is substituted with a tertiary amino substituent was prepared and tested for antimuscarinic activity. In general, potency was markedly decreased, although the morpholinyl and thiomorpholinyl derivatives retained significant activity. These compounds were also examined for muscarinic receptor subtype selectivity. Their subtype selectivities were comparable to that of (R,R)-QNA. The results of this investigation suggest possible differences in the accessory binding sites of the proteinaceous receptor subtypes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.