Whole blood is the preferred product for resuscitation of severe traumatic hemorrhage. It contains all the elements of blood that are necessary for oxygen delivery and hemostasis, in nearly physiologic ratios and concentrations. Group O whole blood that contains low titers of anti-A and anti-B antibodies (low titer group O whole blood) can be safely transfused as a universal blood product to patients of unknown blood group, facilitating rapid treatment of exsanguinating patients. Whole blood can be stored under refrigeration for up to 35 days, during which it retains acceptable hemostatic function, though supplementation with specific blood components, coagulation factors or other adjuncts may be necessary in some patients. Fresh whole blood can be collected from pre-screened donors in a walking blood bank to provide effective resuscitation when fully tested stored whole blood or blood components are unavailable and the need for transfusion is urgent. Available clinical data suggest that whole blood is at least equivalent if not superior to component therapy in the resuscitation of life-threatening hemorrhage. Low titer group O whole blood can be considered the standard of care in resuscitation of major hemorrhage.
Hemorrhage is the most common mechanism of death in battlefield casualties with potentially survivable injuries. There is evidence that early blood product transfusion saves lives among combat casualties. When compared to component therapy, fresh whole blood transfusion improves outcomes in military settings. Cold‐stored whole blood also improves outcomes in trauma patients. Whole blood has the advantage of providing red cells, plasma, and platelets together in a single unit, which simplifies and speeds the process of resuscitation, particularly in austere environments. The Joint Trauma System, the Defense Committee on Trauma, and the Armed Services Blood Program endorse the following: (1) whole blood should be used to treat hemorrhagic shock; (2) low‐titer group O whole blood is the resuscitation product of choice for the treatment of hemorrhagic shock for all casualties at all roles of care; (3) whole blood should be available within 30 min of casualty wounding, on all medical evacuation platforms, and at all resuscitation and surgical team locations; (4) when whole blood is not available, component therapy should be available within 30 min of casualty wounding; (5) all prehospital medical providers should be trained and logistically supported to screen donors, collect fresh whole blood from designated donors, transfuse blood products, recognize and treat transfusion reactions, and complete the minimum documentation requirements; (6) all deploying military personnel should undergo walking blood bank prescreen laboratory testing for transfusion transmitted disease immediately prior to deployment. Those who are blood group O should undergo anti‐A/anti‐B antibody titer testing.
BACKGROUND Transfusion of plasma from recovered patients after Ebolavirus (EBOV) infection, typically called ‘convalescent plasma,’ is an effective treatment for active disease available in endemic areas, but carries the risk of introducing other pathogens, including other strains of EBOV. A pathogen reduction technology using ultraviolet light and riboflavin (UV + RB) is effective against multiple enveloped, negative-sense, single-stranded RNA viruses that are similar in structure to EBOV. We hypothesized that UV + RB is effective against EBOV in blood products without activating complement or reducing protective immunoglobulin titers that are important for the treatment of ebolavirus disease (EVD). STUDY DESIGN AND METHODS Four in vitro experiments were conducted to evaluate effects of UV + RB on green fluorescent protein EBOV (EBOV-GFP), wild-type EBOV in serum and whole blood, respectively, and on immunoglobulins and complement in plasma. Initial titers for Experiments 1–3 were: 4.21 log10 GFP units/mL, 4.96 log10 infectious units per mL, and 4.23 log10 plaque forming units per mL (PFU/mL). Conditions tested in the first three experiments included: 1. EBOV-GFP + UV + RB; 2. EBOV-GFP + RB only; 3 EBOV-GFP + UV only; 4. EBOV-GFP without RB or UV; 5. Virus-free control + UV only; and 6. Virus-free control without RB or UV. RESULTS UV + RB reduced EBOV titers to non-detectable levels in both non-human primate serum (≥ 2.8 to 3.2 log reduction) and human whole blood (≥ 3.0 log reduction) without decreasing protective antibody titers in human plasma. CONCLUSION Our in vitro results demonstrate that the UV + RB treatment efficiently reduces EBOV titers to below limits of detection in both serum and whole blood. In vivo testing to determine whether UV + RB can improve convalescent blood product safety is indicated.
Background The current global pandemic has created unprecedented challenges in the blood supply network. Given the recent shortages, there must be a civilian plan for massively bleeding patients when there are no blood products on the shelf. Recognizing that the time to death in bleeding patients is less than 2 h, timely resupply from unaffected locations is not possible. One solution is to transfuse emergency untested whole blood (EUWB), similar to the extensive military experience fine‐tuned over the last 19 years. While this concept is anathema in current civilian transfusion practice, it seems prudent to have a vetted plan in place. Methods and Materials During the early stages of the 2020 global pandemic, a multidisciplinary and international group of clinicians with broad experience in transfusion medicine communicated routinely. The result is a planning document that provides both background information and a high‐level guide on how to emergently deliver EUWB for patients who would otherwise die of hemorrhage. Results and Conclusions Similar plans have been utilized in remote locations, both on the battlefield and in civilian practice. The proposed recommendations are designed to provide high‐level guidance for experienced blood bankers, transfusion experts, clinicians, and health authorities. Like with all emergency preparedness, it is always better to have a well‐thought‐out and trained plan in place, rather than trying to develop a hasty plan in the midst of a disaster. We need to prevent the potential for empty shelves and bleeding patients dying for lack of blood.
Recent studies have demonstrated that early transfusion of plasma or RBCs improves survival in patients with severe trauma and hemorrhagic shock. Time to initiate transfusion is the critical factor. It is essential that transfusion begin in the prehospital environment when transport times are longer than approximately 15 to 20 minutes. Unfortunately, logistic constraints severely limit the use of blood products in the prehospital setting, especially in military, remote civilian, and mass disaster circumstances, where the need can be most acute. US military requirements for logistically supportable blood products are projected to increase dramatically in future conflicts. Although dried plasma products have been available and safely used in a number of countries for over 20 years, there is no dried plasma product commercially available in the United States. A US Food and Drug Administration–approved dried plasma is urgently needed. Considering the US military, disaster preparedness, and remote civilian trauma perspectives, this is an urgent national health care issue.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.