Premise We developed a novel low‐cost method to visually phenotype belowground structures in the plant rhizosphere. We devised the method introduced here to address the difficulties encountered growing plants in seed germination pouches for long‐term experiments and the high cost of other mini‐rhizotron alternatives. Methods and Results The method described here took inspiration from homemade ant farms commonly used as an educational tool in elementary schools. Using compact disc (CD) cases, we developed mini‐rhizotrons for use in the field and laboratory using the burclover Medicago lupulina. Conclusions Our method combines the benefits of pots and germination pouches. In CD mini‐rhizotrons, plants grew significantly larger than in germination pouches, and unlike pots, it is possible to measure roots without destructive sampling. Our protocol is a cheaper, widely available alternative to more destructive methods, which could facilitate the study of belowground phenotypes and processes by scientists with fewer resources.
Priority effects shape the assembly of free-living communities and host-associated communities. However, the current literature does not fully incorporate two features of host-symbiont interactions, correlated host responses to multiple symbionts and ontogenetic changes in host responses to symbionts, leading to an incomplete picture of the role of priority effects in host-associated communities.We factorially manipulated the inoculation timing of two plant symbionts (mutualistic rhizobia bacteria and parasitic root-knot nematodes) and tested how host age at arrival, arrival order, and arrival synchrony affected symbiont colonization success in the model legume Medicago truncatula. We found that host age, arrival order, and arrival synchrony significantly affected colonization of one or both symbionts. Host age at arrival only affected nematodes but not rhizobia: younger plants were more heavily infected than older plants. By contrast, arrival order only affected rhizobia but not nematodes: plants formed more rhizobia nodules when rhizobia arrived before nematodes. Finally, synchronous arrival decreased colonization both symbionts, an effect that depended on host age. Our results demonstrate that priority effects compromise the host's ability to control colonization by two major symbionts and suggest that the role of correlated host responses and host ontogeny in the assembly of host-associated communities deserve further attention.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.