Marburg virus (MARV) has a high fatality rate in humans, causing hemorrhagic fever characterized by massive viral replication and dysregulated inflammation. Here, we demonstrate that VP24 of MARV binds Kelch-like ECH-associated protein 1 (Keap1), a negative regulator of nuclear transcription factor erythroid-derived 2 (Nrf2). Binding of VP24 to Keap1 Kelch domain releases Nrf2 from Keap1-mediated inhibition promoting persistent activation of a panoply of cytoprotective genes implicated in cellular responses to oxidative stress and regulation of inflammatory responses. Increased expression of Nrf2-dependent genes was demonstrated both during MARV infection and upon ectopic expression of MARV VP24. We also show that Nrf2-deficient mice can control MARV infection when compared to lethal infection in wild-type animals, indicating that Nrf2 is critical for MARV infection. We conclude that VP24-driven activation of the Nrf2-dependent pathway is likely to contribute to dysregulation of host antiviral inflammatory responses and that it ensures survival of MARV-infected cells despite these responses.
Avian influenza virus is endemic in many regions around the world and remains a pandemic threat, a scenario tied closely to outbreaks of the virus in poultry. The innate immune system, in particular the nucleic acid-sensing toll-like receptors (TLRs) -3, -7, -8, and -9, play a major role in coordinating antiviral immune responses. In this study we have investigated the use of TLR ligands as antivirals against influenza A in chickens. The TLR7 ligand poly-C inhibited low-path influenza A growth in the chicken macrophage cell line HD-11 more effectively than poly(I:C), which acts via TLR3. The TLR7 ligand 7-allyl-8-oxoguanosine (loxoribine) inhibited influenza A replication in vitro and in ovo in a dose-dependent manner. Treatment of primary chicken splenocytes with loxoribine resulted in the induction of interferons-α, -β, and -λ, and interferon-stimulated genes PKR and Mx. These results demonstrate that nucleic acid-sensing TLR ligands show considerable potential as antivirals in chickens and could be incorporated into antiviral strategies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.