Pseudomonas aeruginosa is a life-threatening opportunist human pathogen frequently associated with lung inflammatory diseases, namely, cystic fibrosis. Like other species, this gram-negative bacteria is increasingly drug resistant. During the past decade, intensive research efforts have been focused on the identification of natural innate defense molecules with broad antimicrobial activities, collectively known as antimicrobial peptides. Human pre-elafin, best characterized as a potent inhibitor of neutrophil elastase with anti-inflammatory properties, was also shown to possess antimicrobial activity against both gram-positive and gramnegative bacteria, including P. aeruginosa. Its mode of action was, however, not known. Using full-length pre-elafin, each domain separately, and mutated variants of pre-elafin with attenuated antipeptidase activity toward neutrophil elastase, we report here that both pre-elafin domains contribute, through distinct mechanisms, to its antibacterial activity against Pseudomonas aeruginosa. Most importantly, we demonstrate that the whey acidic protein (WAP) domain specifically inhibits a secreted peptidase with the characteristics of arginyl peptidase (protease IV). This is the first demonstration that a human WAP-motif protein inhibits a secreted peptidase to prevent bacterial growth in vitro. Since several WAP-motif proteins from various species demonstrate antimicrobial function with variable activities toward bacterial species, we suggest that this mechanism may be more common than initially anticipated.Pseudomonas aeruginosa is an opportunistic pathogen that is life-threatening for immunocompromised individuals and for patients suffering from chronic respiratory diseases such as cystic fibrosis (CF) (10, 27). Chronic lung P. aeruginosa infection is the primary cause of morbidity and mortality in CF patients, and its prevalence increases with age. P. aeruginosa is also the predominant bacteria associated with nosocomial infections, and acute P. aeruginosa infection may result in sepsis and death (26). P. aeruginosa is characterized by the expression of numerous virulence factors, reflected by the unusually large genome of this bacteria and has developed sophisticated mechanisms to escape the host immune defenses (10,15,27,33). In addition, due to low membrane permeability, active efflux of drugs, and the presence of -lactamase activity, P. aeruginosa infections are becoming increasingly difficult to treat (17). Hence, the development of novel antimicrobial agents, preferably acting on targets exposed at the bacterial cell surface, is urgently needed.Among the P. aeruginosa virulence factors, the secreted peptidases are thought to play a critical role in tissue invasion, nutrient accessibility, and degradation of the innate host defense molecules and therefore constitute potential therapeutic targets (18)(19)(20). Because opportunistic pathogens are taking advantage of a weakened host protective shield, augmentation therapy with lung natural defense molecules also appears to be a ...
BackgroundPre-elafin/trappin-2 is a human innate defense molecule initially described as a potent inhibitor of neutrophil elastase. The full-length protein as well as the N-terminal "cementoin" and C-terminal "elafin" domains were also shown to possess broad antimicrobial activity, namely against the opportunistic pathogen P. aeruginosa. The mode of action of these peptides has, however, yet to be fully elucidated. Both domains of pre-elafin/trappin-2 are polycationic, but only the structure of the elafin domain is currently known. The aim of the present study was to determine the secondary structures of the cementoin domain and to characterize the antibacterial properties of these peptides against P. aeruginosa.ResultsWe show here that the cementoin domain adopts an α-helical conformation both by circular dichroism and nuclear magnetic resonance analyses in the presence of membrane mimetics, a characteristic shared with a large number of linear polycationic antimicrobial peptides. However, pre-elafin/trappin-2 and its domains display only weak lytic properties, as assessed by scanning electron micrography, outer and inner membrane depolarization studies with P. aeruginosa and leakage of liposome-entrapped calcein. Confocal microscopy of fluorescein-labeled pre-elafin/trappin-2 suggests that this protein possesses the ability to translocate across membranes. This correlates with the finding that pre-elafin/trappin-2 and elafin bind to DNA in vitro and attenuate the expression of some P. aeruginosa virulence factors, namely the biofilm formation and the secretion of pyoverdine.ConclusionsThe N-terminal cementoin domain adopts α-helical secondary structures in a membrane mimetic environment, which is common in antimicrobial peptides. However, unlike numerous linear polycationic antimicrobial peptides, membrane disruption does not appear to be the main function of either cementoin, elafin or full-length pre-elafin/trappin-2 against P. aeruginosa. Our results rather suggest that pre-elafin/trappin-2 and elafin, but not cementoin, possess the ability to modulate the expression of some P.aeruginosa virulence factors, possibly through acting on intracellular targets.
Pre-elafin is a tight-binding inhibitor of neutrophil elastase and myeloblastin; two enzymes thought to contribute to tissue damage in lung emphysema. Previous studies have established that pre-elafin is also an effective anti-inflammatory molecule. However, it is not clear whether both functions are linked to the antipeptidase activity of pre-elafin. As a first step toward elucidating the structure/function relationship of this protein, we describe here the construction and characterization of pre-elafin variants with attenuated antipeptidase potential. In these mutants, the P1' methionine residue of the inhibitory loop is replaced by either a lysine (pre-elafinM25K) or a glycine (pre-elafinM25G) residue. Both mutated variants are stable and display biochemical properties undistinguishable from WT (wild-type) pre-elafin. However, compared with WT pre-elafin, their inhibitory constants are increased by one to four orders of magnitude toward neutrophil elastase, myeloblastin and pancreatic elastase, depending on the variants and enzymes tested. As suggested by molecular modelling, this attenuated inhibitory potential correlates with decreased van der Waals interactions between the variants and the enzymes S1' subsite. In elastase-induced experimental emphysema in mice, only WT pre-elafin protected against tissue destruction, as assessed by the relative airspace enlargement measured using lung histopathological sections. Pre-elafin and both mutants prevented transient neutrophil alveolitis. However, even the modestly affected pre-elafinM25K mutant, as assayed in vitro with small synthetic substrates, was a poor inhibitor of the neutrophil elastase and myeloblastin elastolytic activity measured with insoluble elastin. We therefore conclude that full antipeptidase activity of pre-elafin is essential to protect against lung tissue lesions in this experimental model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.