Polychlorinated biphenyls (PCBs) are increasingly recognized as metabolic disruptors. Due to its mass, skeletal muscle is the major site of glucose disposal. While muscle mitochondrial dysfunction and oxidative stress have been shown to play a central role in metabolic disease development, no studies to date have investigated the effect of PCB exposure on muscle energy metabolism and oxidative stress. In this pilot study, we tested the effect of exposure to PCB126 in L6 myotubes (from 1 to 2500 nM for 24 h) on mitochondrial function, glucose metabolism, and oxidative stress. Exposure to PCB126 had no apparent effect on resting, maximal, and proton leak-dependent oxygen consumption rate in intact L6 myotubes. However, basal glucose uptake and glycolysis were inhibited by 20-30 % in L6 myotubes exposed to PCB126. Exposure to PCB126 did not appear to alter skeletal muscle anti-oxidant defense or oxidative stress. In conclusion, our study shows for the first time that exposure to a dioxin-like PCB adversely affects skeletal muscle glucose metabolism. Given the importance of skeletal muscle in the maintenance of glucose homeostasis, PCB126 could play an important role in the development of metabolic disorders.
Background-IL-15 is believed to play a role in the beneficial impact of exercise on muscle energy metabolism. However, previous studies have generally used supraphysiological levels of IL-15 that do not represent contraction-induced IL-15 secretion. Methods-L6 myotubes were treated acutely (3h) and chronically (48h) with concentrations of IL-15 mimicking circulating (1-10 pg/ml) and muscle interstitial (100 pg/ml-20 ng/ml) IL-15 levels with the aim to better understand its autocrine/paracrine role on muscle glucose uptake and mitochondrial function. Results-Acute exposure to IL-15 levels representing muscle interstitial IL-15 increased basal glucose uptake without affecting insulin sensitivity. This was accompanied by increased *
BACKGROUND: Exposure to coplanar polychlorinated biphenyls (PCBs) is linked to the development of insulin resistance. Previous studies suggested PCB126 alters muscle mitochondrial function through an indirect mechanism. Given that PCBs are stored in fat, we hypothesized that PCB126 alters adipokine secretion, which in turn affects muscle metabolism. OBJECTIVES: We determined a) the impacts of PCB126 exposure on adipocyte cytokine/adipokine secretion in vitro; b) whether adipocyte-derived factors alter glucose metabolism and mitochondrial function in myotubes when exposed to PCB126; and c) whether preestablished insulin resistance alters the metabolic responses of adipocytes exposed to PCB126 and the communication between adipocytes and myotubes. METHODS: 3T3-L1 adipocytes were exposed to PCB126 (1-100 nM) in two insulin sensitivity conditions [insulin sensitive (IS) and insulin resistant (IR) adipocytes], followed by the measurement of secreted adipokines, mitochondrial function, and insulin-stimulated glucose uptake. Communication between adipocytes and myotubes was reproduced by exposing C2C12 myotubes or mouse primary myotubes to conditioned medium (CM) derived from IS or IR 3T3-L1 adipocytes exposed to PCB126. Mitochondrial function and insulin-stimulated glucose uptake were then determined in myotubes. RESULTS: IR 3T3-L1 adipocytes treated with PCB126 had significantly higher adipokine (adiponectin, IL-6, MCP-1, TNF-a) secretion and lower mitochondrial function, glucose uptake, and glycolysis. However, PCB126 did not significantly alter these parameters in IS adipocytes. Altered energy metabolism in IR 3T3-L1 adipocytes was linked to lower phosphorylation of AMP-activated protein kinase (p-AMPK) and higher superoxide dismutase 2 levels, an enzyme involved in reactive oxygen species detoxification. Myotubes exposed to the CM from PCB126-treated IR adipocytes had lower glucose uptake, with no alteration in glycolysis or mitochondrial function. Interestingly, p-AMPK levels were higher in myotubes exposed to the CM of PCB126-treated IR adipocytes. DISCUSSION: Taken together, these data suggest that increased adipokine secretion from IR adipocytes exposed to PCB126 might explain impaired glucose uptake in myotubes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.