Rhodium nanoparticles stabilized by 2,2'-, 3,3'-, 4,4'-bipyridine ligands were prepared in various ionic liquids according to a chemical reduction approach. Zerovalent nanospecies in the size range of 2.0-2.5 nm were characterized. The nature of the bipyridine and its influence on the coordination environment of rhodium nanoparticles were investigated in various nonaqueous ionic liquids according to the cation and anion. The hydrogenation of various aromatic compounds by these colloidal suspensions was carried out at 80 degrees C and under 40 bar of H 2. A first structural explanation based on bipyridine coordination modes is proposed to justify the observed different activities.
Ruthenium nanoparticles (RuNPs) were prepared through the hydrogenation of [Ru(COD)(COT)] (COD = 1,5-cyclooctadiene, COT = 1,3,5-cyclooctatriene) in the presence of diphosphites derived from carbohydrates as stabilizing agents, and interestingly, structural modifications of the diphosphite backbone were found to influence nanoparticle size and dispersity, as well as their catalytic activity in arene hydrogenation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.