Noncovalent proteasome inhibitors introduce an alternative mechanism of inhibition to that of covalent inhibitors used in cancer therapy. Starting from a noncovalent linear mimic of TMC-95A, a series of dimerized inhibitors using polyaminohexanoic acid spacers has been designed and optimized to target simultaneously two of the six active sites of the eukaryotic 20S proteasome. The homodimerized compounds actively inhibited chymotrypsin-like (Ki = 6-11 nM) and trypsin-like activities, whereas postacid activity was poorly modified. The noncovalent binding mode was ascertained by X-ray crystallography of the inhibitors complexed with the yeast 20S proteasome. The inhibition of proteasomal activities in human cells was evaluated. The use of the multivalency inhibitor concept has produced highly efficient and selective noncovalent compounds (no inhibition of calpain and cathepsin) that have potential therapeutic advantages compared to covalent binders such as bortezomib and carfilzomib.
We have designed and synthesized new molecular tongs based on a rigid naphthalene scaffold and evaluated their antidimer activity on HIV-1 protease (PR). We inserted carbonylhydrazide and oligohydrazide (azatide) fragments into their peptidomimetic arms to reduce hydrophobicity and increase metabolic stability. These fragments are designed to disrupt the protein-protein interactions by reproducing the hydrogen bond pattern found in the antiparallel β-sheet formed between the N- and C-ends of the two monomers in the native PR. Kinetic analyses and fluorescent probe binding studies showed that several molecular tongs can inhibit PR dimerization. The best nonpeptidic molecular tongs to date were obtained with an inhibition constant K(id) of 50 nM for PR and 80 nM for the multimutated protease ANAM-11. The PR inhibition was selective, the aspartic proteases renin and pepsin were not inhibited.
The circadian system orchestrates the timing of physiological processes of an organism living in daily environmental changes. Disruption of circadian rhythmicity has been shown to result in increased oxidative stress and accelerated aging. The circadian regulation of antioxidant defenses suggests that other redox homeostasis elements such as oxidized protein degradation by the proteasome, could also be modulated by the circadian clock. Hence, we have investigated whether proteasome activities and oxidized protein levels would exhibit circadian rhythmicity in synchronized cultured mammalian cells and addressed the mechanisms underlying this process. Using synchronized human embryonic kidney HEK 293 cells and primary dermal fibroblasts, we have shown that the levels of carbonylated protein and proteasome activity vary rhythmically following a 24h period. Such a modulation of proteasome activity is explained, at least in part, by the circadian expression of both Nuclear factor (erythroid-derived 2)-like 2 (Nrf2) and the proteasome activator PA28αβ. HEK 293 cells showed an increased susceptibility to oxidative stress coincident with the circadian-dependent lower activity of the proteasome. Finally, in contrast to young fibroblasts, no circadian modulation of the proteasome activity and carbonylated protein levels was evidenced in senescent fibroblasts. This paper reports a novel role of the circadian system for regulating proteasome function. In addition, the observation that proteasome activity is modulated by the circadian clock opens new avenues for both the cancer and the aging fields, as exemplified by the rhythmic resistance of immortalized cells to oxidative stress and loss of rhythmicity of proteasome activity in senescent fibroblasts.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.