The Australian Ascochyta rabiei (Pass.) Labr. (syn. Phoma rabiei) population has low genotypic diversity with only one mating type detected to date, potentially precluding substantial evolution through recombination. However, a large diversity in aggressiveness exists. In an effort to better understand the risk from selective adaptation to currently used resistance sources and chemical control strategies, the population was examined in detail. For this, a total of 598 isolates were quasi-hierarchically sampled between 2013 and 2015 across all major Australian chickpea growing regions and commonly grown host genotypes. Although a large number of haplotypes were identified (66) through short sequence repeat (SSR) genotyping, overall low gene diversity (Hexp = 0.066) and genotypic diversity (D = 0.57) was detected. Almost 70% of the isolates assessed were of a single dominant haplotype (ARH01). Disease screening on a differential host set, including three commonly deployed resistance sources, revealed distinct aggressiveness among the isolates, with 17% of all isolates identified as highly aggressive. Almost 75% of these were of the ARH01 haplotype. A similar pattern was observed at the host level, with 46% of all isolates collected from the commonly grown host genotype Genesis090 (classified as “resistant” during the term of collection) identified as highly aggressive. Of these, 63% belonged to the ARH01 haplotype. In conclusion, the ARH01 haplotype represents a significant risk to the Australian chickpea industry, being not only widely adapted to the diverse agro-geographical environments of the Australian chickpea growing regions, but also containing a disproportionately large number of aggressive isolates, indicating fitness to survive and replicate on the best resistance sources in the Australian germplasm.
12The study examined the genetic structure and potential for adaption to host genotype of 13 Ascochyta rabiei, a major necrotrophic fungal pathogen of chickpea. For this, A. rabiei 14 populations derived from six major chickpea growing regions in Australia were characterized 15 using 20 polymorphic microsatellite markers. The overall gene (H = 0.094) and genotypic 16 (D = 0.80) diversities among the entire population were low, indicating the establishment of a 17 recent founder population. Since, no significant genetic differentiation was detected among 18 growing regions, subsequent anthropogenic dispersal was proposed, mainly through seed 19 movement. The highest genotypic diversity and allelic richness was detected at Kingsford, 20
Significant differences in defence pathway-related gene expression were observed among chickpea cultivars following A. rabiei infection. Differential gene expression is indicative of diverse resistances, a theoretical tool for selective breeding. A high number of Ascochyta rabiei pathotypes infecting chickpea in Australia has severely hampered efforts towards breeding for sustained quantitative resistance in chickpea. Breeding for sustained resistance will be aided by detailed knowledge of defence responses to isolates with different aggressiveness. As an initial step, the conserved and differential expressions of a suit of previously characterised genes known to be involved in fungal defence mechanisms were assessed among resistant and susceptible host genotypes following inoculation with high or low aggressive A. rabiei isolates. Using quantitative Real-Time PCR (qRT-PCR), 15 defence-related genes, normalised with two reference genes, were temporally differentially expressed (P < 0.005) as early as 2 h post inoculation of Genesis090 (resistant) or Kaniva (susceptible). The highly aggressive isolate, 09KAL09, induced vastly different expression profiles of eight key defence-related genes among resistant and susceptible genotypes. Six of these same genes were differentially expressed among ten host genotypes, inclusive of the best resistance sources within the Australian chickpea breeding program, indicating potential use for discrimination and selection of resistance "type" in future breeding pursuits.
This article documents the addition of 139 microsatellite marker loci and 90 pairs of singlenucleotide polymorphism sequencing primers to the Molecular Ecology Resources Database. Loci were developed for the following species: Aglaoctenus lagotis, Costus pulverulentus, Costus scaber, Culex pipiens, Dascyllus marginatus, Lupinus nanus Benth, Phloeomyzus passerini, Podarcis muralis, Rhododendron rubropilosum Hayata var. taiwanalpinum and Zoarces viviparus. These loci were cross-tested on the following species: Culex quinquefasciatus, Rhododendron pseudochrysanthum Hay. ssp. morii (Hay.) Yamazaki and R. pseudochrysanthum Hayata. This article also documents the addition of 48 sequencing primer pairs and 90 allele-specific primers for Engraulis encrasicolus. et al.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.