Louisiana faces extensive coastal land loss which threatens the livelihoods of marginalized populations. These groups have endured extreme disruptive events in the past and have survived in the region by relying on several resilient practices, including mobility. Facing environmental changes that will be wrought by deliberate coastal restoration programs, elderly residents are resisting migration while younger residents continue a decades-long inland migration. Interviews and historical records illustrate a complex intersection of resilient practices and environmental migration. The process underway conflicts to some extent with prevailing concepts in environmental migration most notably deviating from established migration patterns. In terms of social justice, selective out-migration of younger adults leaves a more vulnerable population behind, but also provides a supplementary source of income and social links to inland locales. Organized resistance to restoration projects represents a social justice response to programs that threaten the resource-based livelihoods of coastal residents while offering protection to safer inland urban residents.
ABSTRACT. Louisiana's coastal residents have endured centuries of hurricanes and decades of oil spills. Locally based, inherent resilient practices have enabled them to persist in place. This paper documents the evolution of actions taken by Louisiana's coastal residents that constitute effective resilient activities in the aftermath of disruptive events. It compares the efforts that arose from coastal communities that were rooted in local environmental knowledge with generic external programs designed to enable hazard mitigation, emergency response, and recovery form damaging hurricanes and oil spills. Additionally, it will identify points of opportunity to fortify resilience by integrating inherent and formal resilience.
Port Fourchon is a vital staging area for Gulf of Mexico energy production and is strategically located in the Barataria-Terrebonne Estuary System, a biologically and economically productive ecosystem bounded by the Atchafalaya and Mississippi Rivers. This is also one of the most fragile and rapidly evolving landscapes in the United States, making the port and surrounding communities highly vulnerable to natural hazards and the impacts of climate change. Building resilience to climate-based disruptions is vital to Port Fourchon and other businesses operating in this dynamic landscape. The port plans to deepen its channel to 50 feet (15 m) to service larger vessels, generating millions of cubic yards of sediment and seeks to beneficially utilize this sediment to develop natural and nature-based solutions to help prepare for future challenges. To accomplish this goal, an Environmental Competency Group consisting of residents, coastal scientists, and key stakeholders was convened to co-develop and evaluate a series of marsh creation projects utilizing this sediment that will maximize social and ecological co-benefits and enhance the resilience of Port Fourchon and the surrounding communities. The group utilized participatory modeling and social return on investment methods to model long-term changes to the landscape and wetland vegetation communities resulting from the co-developed restoration strategies and assess the social value of these strategies. Residents who live and work around Port Fourchon were included in all stages of this research, including development and prioritization of potential restoration areas, identifying important physical and ecological parameters that should be modeled, evaluation of model results, and assessment of the social values expected to be generated by each restoration alternative under consideration. The transdisciplinary approach used in this research highlights the effectiveness of a community-informed, systematic approach to coastal restoration planning in building community resilience and ecosystem sustainability. This study provides approaches and tools that can be adapted for use elsewhere to develop holistic solutions that maximize the social, ecological, and economic co-benefits of coastal restoration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.