Bile acids (BAs) are amphipathic molecules produced from cholesterol by the liver. Expelled from the gallbladder upon meal ingestion, BAs serve as fat solubilizers in the intestine. BAs are reabsorbed in the ileum and return via the portal vein to the liver where, together with nutrients, they provide signals to coordinate metabolic responses. BAs act on energy and metabolic homeostasis through the activation of membrane and nuclear receptors, among which the nuclear receptor farnesoid X receptor (FXR) is an important regulator of several metabolic pathways. Highly expressed in the liver and the small intestine, FXR contributes to BA effects on metabolism, inflammation and cell cycle control. The pharmacological modulation of its activity has emerged as a potential therapeutic strategy for liver and metabolic diseases. This review highlights recent advances regarding the mechanisms by which the BA sensor FXR contributes to global signaling effects of BAs, and how FXR activity may be regulated by nutrient-sensitive signaling pathways.
Weight gain and metabolic disturbances, such as dyslipidemia and hyperglycaemia, are common side effects of most antipsychotic drugs, including risperidone. The aim of this study was to investigate the effects of chronic treatment with risperidone on body weight, fat accumulation, liver weight, and hepatic expression of key genes involved in lipid metabolism in female mice. We also addressed the mechanism of risperidone induction of metabolic side effects by exploring its effect on lipid and cholesterol metabolism in primary cultures of rat hepatocytes. Eleven weeks of treatment with long-acting risperidone (12.5 mpk/week) resulted in a significant weight gain associated with an increase of liver and adipose tissue weight. These effects were positively correlated with hepatic mRNA induction of two key genes involved in lipogenesis: sterol regulatory element binding protein-1c (SREBP-1c) and fatty acid synthase (FAS). Furthermore, in line with these in vivo results, risperidone elicited significant inductions of SREBP-1 maturation and FAS mRNA expression in primary cultures of rat hepatocytes associated with an increase of free fatty acid, triacylglycerol, and phospholipid synthesis as assessed by acetate incorporation. The current investigations underscore the usefulness of a mouse model to study the weight gain observed with risperidone treatment in humans. This study shows that risperidone induces similar effects in the liver (in vivo) and in hepatocyte cell cultures (in vitro) on the expression of key genes and/or proteins that control lipid metabolism. This suggests that risperidone could alter lipid metabolism in the liver and induce weight gain in a way that is partly independent of its action on the central nervous system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.