The immune system can eliminate tumors, but checkpoints enable tumors to escape immune destruction. Here, we report the systematic identification of immune evasion mechanisms using genome-scale in vivo CRISPR screens in eight murine cancer models treated with immune checkpoint blockade (ICB). We identify and validate previously unreported immune evasion genes and identify key immune inhibitory checkpoints that have a conserved role across several cancer models, such as the non-classical MHC-I molecule Qa-1b/HLA-E, which scores as the top overall sensitizing hit across all screens. Surprisingly, we find that loss of IFNγ signaling by tumor cells sensitizes 6 of 8 cancer models to ICB. While IFN-mediated inflammation has been associated with response to ICB, there have also been reports of ICB-resistance driven by IFN sensing. However, several divergent mechanisms have been proposed to explain the inhibitory effect of tumor IFN sensing, leading to uncertainty about how this key immune signaling pathway is regulating anti-tumor immunity in different contexts. Using in vivo screening data, transcriptional profiling, and genetic interaction studies, we reveal that the immune-inhibitory effects of tumor IFN sensing are the direct result of tumor upregulation of classical and non-classical MHC-I genes. The interferon-MHC-I axis can inhibit anti-tumor immunity through two mechanisms: first, upregulation of classical MHC-I inhibits the cytotoxicity of natural killer cells, which are activated by ICB. Second, IFN-mediated upregulation of Qa-1b directly inhibits cytotoxicity by effector CD8+ T cells via the NKG2A/CD94 receptor, which is induced on CD8+ T cells by ICB. Finally, we show that high interferon-stimulated gene expression in patients is associated with decreased survival in RCC and poor response to ICB in melanoma. Our study establishes a unifying mechanism to explain the inhibitory role of tumor IFN sensing, revealing that IFN-mediated upregulation of classical and non-classical MHC-I inhibitory checkpoints can facilitate immune escape. Citation Format: Juan Dubrot, Peter P. Du, Sarah Kate Lane-Reticker, Emily A. Kessler, Audrey J. Muscato, Arnav Mehta, Samuel S. Freeman, Peter M. Allen, Kira E. Olander, Kyle M. Ockerman, Clara H. Wolfe, Fabius Wiesmann, Nelson H. Knudsen, Hsiao-Wei Tsao, Arvin Iracheta-Vellve, Emily M. Schneider, Andrea N. Rivera-Rosario, Ian C. Kohnle, Hans W. Pope, Austin Ayer, Gargi Mishra, Margaret D. Zimmer, Sarah Y. Kim, Animesh Mahapatra, Hakimeh Ebrahimi-Nik, Dennie T. Frederick, Genevieve M. Boland, W. Nicholas Haining, David E. Root, John G. Doench, Nir Hacohen, Kathleen B. Yates, Robert T. Manguso. In vivo CRISPR screens reveal the landscape of immune evasion pathways across cancer [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2022; 2022 Apr 8-13. Philadelphia (PA): AACR; Cancer Res 2022;82(12_Suppl):Abstract nr 3610.
Central pattern generators produce rhythmic behaviors independently of sensory input; however, their outputs can be modulated by neuropeptides, thereby allowing for functional flexibility. We investigated the effects of C-type allatostatins (AST-C) on the cardiac ganglion (CG), which is the central pattern generator that controls the heart of the American lobster, Homarus americanus, to identify the biological mechanism underlying the significant variability in individual responses to AST-C. We proposed that the presence of multiple receptors, and thus differential receptor distribution, was at least partly responsible for this observed variability. Using transcriptome mining and PCR-based cloning, we identified four AST-C receptors (ASTCRs) in the CG; we then characterized their cellular localization, binding potential, and functional activation. Only two of the four receptors, ASTCR1 and ASTCR2, were fully functional GPCRs that targeted to the cell surface and were activated by AST-C peptides in our insect cell expression system. All four, however, were amplified from CG cDNAs. Following the confirmation of ASTCR expression, we used physiological and bioinformatic techniques to correlate receptor expression with cardiac responses to AST-C across individuals. Expression of ASTCR1 in the CG showed a negative correlation with increasing contraction amplitude in response to AST-C perfusion through the lobster heart, suggesting that the differential expression of ASTCRs within the CG is partly responsible for the specific physiological response to AST-C exhibited by a given individual lobster.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.