BACKGROUND: Metal sulfide recovery in sulfate reducing bioreactors is a challenge due to the formation of small precipitates with poor settling properties. The size of the metal sulfide precipitates with the change in operational parameters such as pH, sulfide concentration and reactor configuration has been previously studied. The effect of the hydraulic retention time (HRT) on the metal precipitate characteristics such as particle size for settling has not yet been addressed.
RESULTS:The change in size of the metal (Cu, Zn, Pb and Cd) sulfide precipitates as a function of the HRT was studied in two sulfate reducing inversed fluidized bed (IFB) reactors operating at different chemical oxygen demand concentrations to produce high and low sulfide concentrations. The decrease of the HRT from 24 to 9 h in both IFB reactors affected the contact time of the precipitates formed, thus making differences in aggregation and particle growth regardless of the differences in sulfide concentration. Further HRT decrease to 4.5 h affected the sulfate reducing activity for sulfide production and hence, the supersaturation level and solid phase speciation. Metal sulfide precipitates affected the sulfate reducing activity and community in the biofilm, probably because of the stronger local supersaturation causing metal sulfides accumulation in the biofilm.CONCLUSIONS: This study shows that the HRT is an important factor determining the size and thus the settling rate of the metal sulfides formed in bioreactors.
Although nearly all newly derived water purification methods have improved the water quality in developing countries, few have been accepted and maintained for long-term use. Field studies indicate that the most beneficial methods use indigenous resources, as they are both accessible and accepted by communities they help. In an effort to implement a material that will meet community needs, two fractions of mucilage gum were extracted from the Opuntia ficus-indica cactus and tested as flocculation agents against sediment and bacterial contamination. As diatomic ions are known to affect both mucilage and promote cell aggregation, CaCl(2) was studied in conjunction and compared with mucilage as a bacteria removal method. To evaluate performance, ion-rich waters that mimic natural water bodies were prepared. Column tests containing suspensions of the sediment kaolin exhibited particle flocculation and settling rates up to 13.2 cm/min with mucilage versus control settling rates of 0.5 cm/min. Bacillus cereus tests displayed flocculation and improved settling times with mucilage concentrations lower than 5 ppm and removal rates between 97 and 98% were observed for high bacteria concentration tests (>10(8) cells/ml). This natural material not only displays water purification abilities, but it is also affordable, renewable and readily available.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.