Intake of hemoglobin by the hemoglobin-haptoglobin receptor CD163 leads to a distinct alternative non-foam cell antiinflammatory macrophage phenotype that was previously considered atheroprotective. Here, we reveal an unexpected but important pathogenic role for these macrophages in atherosclerosis. Using human atherosclerotic samples, cultured cells, and a mouse model of advanced atherosclerosis, we investigated the role of intraplaque hemorrhage on macrophage function with respect to angiogenesis, vascular permeability, inflammation, and plaque progression. In human atherosclerotic lesions, CD163+ macrophages were associated with plaque progression, microvascularity, and a high level of HIF1α and VEGF-A expression. We observed irregular vascular endothelial cadherin in intraplaque microvessels surrounded by CD163+ macrophages. Within these cells, activation of HIF1α via inhibition of prolyl hydroxylases promoted VEGF-mediated increases in intraplaque angiogenesis, vascular permeability, and inflammatory cell recruitment. CD163+ macrophages increased intraplaque endothelial VCAM expression and plaque inflammation. Subjects with homozygous minor alleles of the SNP rs7136716 had elevated microvessel density, increased expression of CD163 in ruptured coronary plaques, and a higher risk of myocardial infarction and coronary heart disease in population cohorts. Thus, our findings highlight a nonlipid-driven mechanism by which alternative macrophages promote plaque angiogenesis, leakiness, inflammation, and progression via the CD163/HIF1α/VEGF-A pathway.
Derangement in pulmonary surfactant or its components and alveolar collapse are common findings in idiopathic pulmonary fibrosis (IPF). Surfactant proteins play important roles in innate host defense and normal function of the lung. We examined associations between IPF and genetic polymorphic variants of surfactant proteins, SP-A1, SP-A2, SP-B, SP-C, and SP-D. One SP-A1 (6A(4)) allele and single nucleotide polymorphisms (SNPs) that characterize the 6A(4) allele, and one SP-B (B1580_C) were found with higher frequency ( P=0.01) in nonsmoker and smoker IPF ( n=84) subgroups, respectively, compared with healthy controls ( n=194). To explore whether a tryptophan (present in 6A(4)) or an arginine (present in other SP-A1 alleles and in all SP-A2 alleles) at amino acid 219 alters protein behavior, two truncated proteins that varied only at amino acid 219 were oxidized by exposure to ozone. Differences in the absorption spectra (310-350 nm) between the two truncated recombinant SP-A proteins were observed both before and after protein oxidation, suggesting allele-specific aggregation differences attributable to amino acid 219. The SP-B SNP B1580_C (odds ratio:7.63; confidence interval:1.64-35.4; P=0.01), to be a risk factor for IPF smokers, has also been shown to be a risk factor for other pulmonary diseases. The SP-C and SP-D SNPs and SP-B-linked microsatellite markers studied did not associate with IPF. These findings indicate that surfactant protein variants may serve as markers to identify subgroups of patients at risk, and we speculate that these contribute to IPF pathogenesis.
The goal of this work is to develop an innovative method that combines bioprinting and endoscopic imaging to repair tympanic membrane perforations (TMPs). TMPs are a serious health issue because they can lead to both conductive hearing loss and repeated otitis media. TMPs occur in 3-5% of cases after ear tube placement, as well as in cases of acute otitis media (the second most common infection in pediatrics), chronic otitis media with or without cholesteatoma, or as a result of barotrauma to the ear. About 55,000 tympanoplasties, the surgery performed to reconstruct TMPs, are performed every year, and the commonly used cartilage grafting technique has a success rate between 43% and 100%. This wide variability in successful tympanoplasty indicates that the current approach relies heavily on the skill of the surgeon to carve the shield graft into the shape of the TMP, which can be extremely difficult because of the perforation's irregular shape. To this end, we hypothesized that patient specific acellular grafts can be bioprinted to repair TMPs. In vitro data demonstrated that our approach resulted in excellent wound healing responses (e.g., cell invasion and proliferations) using our bioprinted gelatin methacrylate constructs. Based on these results, we then bioprinted customized acellular grafts to treat TMP based on endoscopic imaging of the perforation and demonstrated improved TMP healing in a chinchilla study. These ear graft techniques could transform clinical practice by eliminating the need for hand-carved grafts. To our knowledge, this is the first proof of concept of using bioprinting and endoscopic imaging to fabricate customized grafts to treat tissue perforations. This technology could be transferred to other medical pathologies and be used to rapidly scan internal organs such as intestines for microperforations, brain covering (Dura mater) for determination of sites of potential cerebrospinal fluid leaks, and vascular systems to determine arterial wall damage before aneurysm rupture in strokes.
The endocannabinoid arachidonoyl ethanolamide (AEA) is a potent inducer of tumor cell apoptosis however its mechanism of cytotoxicity is unclear. A previous report from our laboratory showed that AEA induced cell death in a COX-2-dependent manner and in this report our data indicate that AEA-induced apoptosis is mediated by COX-2 metabolic products of the J-series. In experiments conducted with JWF2 keratinocytes which overexpress COX-2, AEA caused a concentration-regulated increase in J-series prostaglandin production and apoptosis. Similarly, cell treatment with exogenously added J-series prostaglandins (15-deoxy, Δ 12,14 PGJ 2 and PGJ 2 ) induced apoptosis. AEA-induced apoptosis was inhibited by the antioxidant, N-acetyl cysteine, indicating that reactive oxygen species generation was required for apoptosis. Using antagonists of cannabinoid receptor 1, cannabinoid receptor 2, or TRPV1, it was observed that cannabinoid receptor inhibition did not block AEA-mediated cell death. In contrast, an inhibitor of fatty acid amide hydrolase (FAAH) potentiated AEA-induced J-series PG synthesis and apoptosis. These results suggest that the metabolism of AEA to J-series PGs regulates the induction of apoptosis in cells with elevated COX-2 levels. Our data further indicate that the proapoptotic activity of AEA can be enhanced by combining it with an inhibitor of FAAH. As such, AEA may be an effective agent to eliminate tumor cells that overexpress COX-2.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.