Monitoring forest–agriculture mosaics is crucial for understanding landscape heterogeneity and managing biodiversity. Mapping these mosaics from remotely sensed imagery remains challenging, since ecological gradients from forested to agricultural areas make characterizing vegetation more difficult. The recent synthetic aperture radar (SAR) Sentinel-1 (S-1) and optical Sentinel-2 (S-2) time series provide a great opportunity to monitor forest–agriculture mosaics due to their high spatial and temporal resolutions. However, while a few studies have used the temporal resolution of S-2 time series alone to map land cover and land use in cropland and/or forested areas, S-1 time series have not yet been investigated alone for this purpose. The combined use of S-1 & S-2 time series has been assessed for only one or a few land cover classes. In this study, we assessed the potential of S-1 data alone, S-2 data alone, and their combined use for mapping forest–agriculture mosaics over two study areas: a temperate mountainous landscape in the Cantabrian Range (Spain) and a tropical forested landscape in Paragominas (Brazil). Satellite images were classified using an incremental procedure based on an importance rank of the input features. The classifications obtained with S-2 data alone (mean kappa index = 0.59–0.83) were more accurate than those obtained with S-1 data alone (mean kappa index = 0.28–0.72). Accuracy increased when combining S-1 and 2 data (mean kappa index = 0.55–0.85). The method enables defining the number and type of features that discriminate land cover classes in an optimal manner according to the type of landscape considered. The best configuration for the Spanish and Brazilian study areas included 5 and 10 features, respectively, for S-2 data alone and 10 and 20 features, respectively, for S-1 data alone. Short-wave infrared and VV and VH polarizations were key features of S-2 and S-1 data, respectively. In addition, the method enables defining key periods that discriminate land cover classes according to the type of images used. For example, in the Cantabrian Range, winter and summer were key for S-2 time series, while spring and winter were key for S-1 time series.
Ecological modeling requires sufficient spatial resolution and a careful selection of environmental variables to achieve good predictive performance. Although national and international administrations offer fine-scale environmental data, they usually have limited spatial coverage (country or continent). Alternatively, optical and radar satellite imagery is available with high resolutions, global coverage and frequent revisit intervals. Here, we compared the performance of ecological models trained with free satellite data with models fitted using regionally restricted spatial datasets. We developed brown bear habitat suitability and connectivity models from three datasets with different spatial coverage and accessibility. These datasets comprised (1) a Sentinel-1 and 2 land cover map (global coverage); (2) pan-European vegetation and land cover layers (continental coverage); and (3) LiDAR data and the Forest Map of Spain (national coverage). Results show that Sentinel imagery and pan-European datasets are powerful sources to estimate vegetation variables for habitat and connectivity modeling. However, Sentinel data could be limited for understanding precise habitat–species associations if the derived discrete variables do not distinguish a wide range of vegetation types. Therefore, more effort should be taken to improving the thematic resolution of satellite-derived vegetation variables. Our findings support the application of ecological modeling worldwide and can help select spatial datasets according to their coverage and resolution for habitat suitability and connectivity modeling.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.