Microplastics are widely dispersed throughout the marine environment. An understanding of the distribution and accumulation of this form of pollution is crucial for gauging environmental risk. Presented here is the first record of plastic contamination, in the 5 mm–250 μm size range, of Irish continental shelf sediments. Sixty-two microplastics were recovered from 10 of 11 stations using box cores. 97% of recovered microplastics were found to reside shallower than 2.5 cm sediment depth, with the area of highest microplastic concentration being the water-sediment interface and top 0.5 cm of sediments (66%). Microplastics were not found deeper than 3.5 ± 0.5 cm. These findings demonstrate that microplastic contamination is ubiquitous within superficial sediments and bottom water along the western Irish continental shelf. Results highlight that cores need to be at least 4–5 cm deep to quantify the standing stock of microplastics within marine sediments. All recovered microplastics were classified as secondary microplastics as they appear to be remnants of larger items; fibres being the principal form of microplastic pollution (85%), followed by broken fragments (15%). The range of polymer types, colours and physical forms recovered suggests a variety of sources. Further research is needed to understand the mechanisms influencing microplastic transport, deposition, resuspension and subsequent interactions with biota.
The anisotropic characteristics of the Hikurangi subduction zone in central North Island, New Zealand are studied using shear‐wave splitting measurements from 55 local earthquakes recorded on a 200 km profile of 19 stations. The eastern fore‐arc shows trench‐parallel fast directions and a low average delay time of 0.2 s. The source of anisotropy is confined to the upper 60 km and is likely to be deformation induced within the overriding Australian plate. Central western North Island shows N‐S trending fast anisotropy which may signify the presence of a viscous blanket of mantle material being entrained by the absolute motion of the Australian plate. Between these regions a dramatic switch to extension‐parallel fast directions and delay times of 0.35 s are seen across the back‐arc in the Taupo Volcanic Zone (TVZ). These results suggest asthenospheric flow beneath the overriding plate with the olivine a‐axes oriented in the extension direction down to a maximum depth of 100 km.
ocean-atmosphere climate linkages mid-Holocene climate optimum Eastern North Atlantic Central water circulation NAO orbital insolation Climate records of the mid-to-late Holocene transition, between 3-4 thousand years before present (ka), often exhibit a rapid change in response to the gradual change in orbital insolation. Here we investigate North Atlantic Central Water circulation as a possible mechanism regulating the latitudinal temperature gradient (LTG), which, in turn, amplifies climate sensitivity to small changes in solar irradiance. Through this mechanism, sharp climate events and transitions are the result of a positive feedback process that propagates and amplifies climate events in the North Atlantic region. We explore these linkages using an intermediate water temperature record reconstructed from Mg/Ca measurements of benthic foraminifera (Hyalinea balthica) from a sediment core off NW Africa (889 m depth) between 0 to 5.5 ka. Our results show that Eastern North Atlantic Central Waters (ENACW) cooled by ∼1 • ± 0.7 • C and densities decreased by σ θ = 0.4 ± 0.2 between 3.3 and 2.6 ka. This shift in ENACW hydrography illustrates a transition towards enhanced mid-latitude atmospheric circulation after 2.7 ka in particular during cold events of the late-Holocene. The presented records demonstrate the important role of ENACW circulation in propagating the climate signatures of the LTG by reducing the meridional heat transfer from high to low latitudes during the transition from the Holocene Thermal Maximum to the late-Holocene. In addition, the dynamic response of ENACW circulation to the gradual climate forcing of LTGs provides a prime example of an amplifying climate feedback mechanism.
The ocean constitutes the largest heat reservoir in the Earth's energy budget and thus exerts a major influence on its climate. Instrumental observations show an increase in ocean heat content (OHC) associated with the increase in greenhouse emissions. Here we review proxy records of intermediate water temperatures from sediment cores in the equatorial Pacific and northeastern Atlantic Oceans, spanning 10,000 years beyond the instrumental record. These records suggests that intermediate waters were 1.5-2°C warmer during the Holocene Thermal Maximum than in the last century. Intermediate water masses cooled by 0.9°C from the Medieval Climate Anomaly to the Little Ice Age. These changes are significantly larger than the temperature anomalies documented in the instrumental record. The implied large perturbations in OHC and Earth's energy budget may seem at odds with very small radiative forcing anomalies throughout the Holocene and Common Era. We suggest that even very small radiative perturbations can change the latitudinal temperature gradient and strongly affect prevailing atmospheric wind systems and hence air-sea heat exchange. These dynamic processes provide an efficient mechanism to amplify small changes in insolation into relatively large changes in OHC. Over long time periods the ocean's interior acts like a capacitor and builds up large (positive and negative) heat anomalies that can mitigate or amplify small radiative perturbations as seen in the Holocene trend and Common Era anomalies, respectively. Evidently the ocean's interior is more sensitive to small external forcings than the global surface ocean because of the high sensitivity of heat exchange in the high-latitudes to climate variations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.