The global emergence of drug-resistant bacteria leads to the loss of efficacy of our antibiotics arsenal and severely limits the success of currently available treatments. Here, we developed an innovative strategy based on targeted-antibacterial-plasmids (TAPs) that use bacterial conjugation to deliver CRISPR/Cas systems exerting a strain-specific antibacterial activity. TAPs are highly versatile as they can be directed against any specific genomic or plasmid DNA using the custom algorithm (CSTB) that identifies appropriate targeting spacer sequences. We demonstrate the ability of TAPs to induce strain-selective killing by introducing lethal double strand breaks (DSBs) into the targeted genomes. TAPs directed against a plasmid-born carbapenem resistance gene efficiently resensitise the strain to the drug. This work represents an essential step toward the development of an alternative to antibiotic treatments, which could be used for in situ microbiota modification to eradicate targeted resistant and/or pathogenic bacteria without affecting other non-targeted bacterial species.
Drug-efflux by pump proteins is one of the major mechanisms of antibiotic resistance in bacteria. Here, we use quantitative fluorescence microscopy to investigate the real-time dynamics of drug accumulation and efflux in live E. coli cells. We visualize simultaneously the intrinsically fluorescent protein-synthesis inhibitor tetracycline (Tc), and the fluorescently labelled Tc-specific efflux pump, TetA. We show that Tc penetrates the cells within minutes and accumulates to stable intracellular concentration after ∼20 min. The final level of drug accumulation reflects the balance between Tc-uptake by the cells and Tc-efflux by pump proteins. In wild-type Tc-sensitive cells, drug accumulation is significantly limited by the activity of the multidrug efflux pump, AcrAB-TolC. Tc-resistance wild-type cells carrying a plasmid-borne Tn10 transposon contain variable amounts of TetA protein, produced under steady-state repression by the TetR repressor. TetA content heterogeneity determines the cells’ initial ability to efflux Tc. Yet, efflux remains partial until the synthesis of additional TetA pumps allows for Tc-efflux activity to surpass Tc-uptake. Cells overproducing TetA no longer accumulate Tc and become resistant to high concentrations of the drug. This work uncovers the dynamic balance between drug entry, protein-synthesis inhibition, efflux-pump production, drug-efflux activity, and drug-resistance levels.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.