With today's interest in novel renewable chemicals and polymers, the underexploited marine green algae belonging to species of Ulva and Entermorpha stimulated interest as sources of polysaccharides with innovative structure and functional properties. These algae are common on all seashores and can produce in time an important amount of biomass in nutrient-enriched waters. The major water-soluble polysaccharide, ulvan, extracted from the cell wall represents about 8-29% of the algae dry weight. The original physicochemical, rheological, and biological properties recently unraveled for this complex sulfated aldobiouronan open the way for novel potential applications.
Ultrastructural analysis of the gel forming green seaweed sulfated polysaccharide ulvan revealed a spherical-based morphology (10-18 nm diameter) more or less aggregated in aqueous solution. At pH 13 in TBAOH (tetrabutyl ammonium hydroxyde) or NaOH, ulvan formed an open gel-like structure or a continuous film by fusion or coalescence of bead-like structures, while in acidic pH conditions, ulvan appeared as dispersed beads. Low concentrations of sodium chloride, copper or boric acid induced the formation of aggregates. These results highlight the hydrophobic and aggregative behavior of ulvan that are discussed in regard to the peculiar gel formation and the low intrinsic viscosity of the polysaccharide in aqueous solution. (c) 2009 Wiley Periodicals, Inc. Biopolymers 91: 652-664, 2009.This article was originally published online as an accepted preprint. The "Published Online" date corresponds to the preprint version. You can request a copy of the preprint by emailing the Biopolymers editorial office at biopolymers@wiley.com.
The water-soluble cell wall polysaccharides from green seaweeds of Ulva spp. (Ulvales, Chlorophyta), referred to as ulvan, demonstrate composition-and structure-related functional properties. Mid-infrared spectroscopy combined with chemometric techniques was investigated as a means to rapidly predict the chemical composition of ulvan extracts. A calibration was realized with 41 ulvan extracts from two Ulva species. The variables studied included the constituent sugars (rhamnose, xylose, glucose, galactose, glucuronic acid, iduronic acid), protein, and sulfate contents. The correlation between Fourier transform infrared and chemical data was developed using partial least squares (PLS) regression with full cross-validation (leave one out). The coefficients of determination in cross-validation (R 2 CAL ) and the standard error in cross-validation were determined for each variable. The PLS model validation resulted in a coefficient of determination (R 2 VAL ) and a standard error in prediction. Good predictions were obtained for rhamnose (R 2 VAL = 0.9244), xylose (R 2 VAL =0.8758), glucuronic acid (R 2 VAL =0.9415), and sulfate (R 2 VAL =0.9218), which are the main ulvan constituents. However, minor components such as proteins, glucose, galactose, and iduronic acid were not correctly predicted. This study showed that mid-infrared spectroscopy combined with PLS regression is a reliable and fast method for the quantification of the main chemical constituents of ulvan extracts.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.