Worldwide spreading of drug-resistant pathogens makes mechanistic understanding of antibiotic action an urgent task. The macrocyclic antibiotic lipiarmycin (Lpm), which is under development for clinical use, inhibits bacterial RNA polymerase (RNAP) by an unknown mechanism. Using genetic and biochemical approaches, we show that Lpm targets the sigma(70) subunit region 3.2 and the RNAP beta' subunit switch-2 element, which controls the clamping of promoter DNA in the RNAP active-site cleft. Lpm abolishes isomerization of the 'closed'-promoter complex to the transcriptionally competent 'open' complex and blocks sigma(70)-stimulated RNA synthesis on promoter-less DNA templates. Lpm activity decreases when the template DNA strand is stabilized at the active site through the interaction of RNAP with the nascent RNA chain. Template DNA-strand fitting into the RNAP active-site cleft directed by the beta' subunit switch-2 element and the sigma(70) subunit region 3.2 is essential for promoter melting and for de novo initiation of RNA synthesis, and our results suggest that Lpm impedes this process.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.