Stimulation of intramural nerves in the vas deferens of many species yields a classical biphasic contraction comprised of an initial fast component, mediated by P2X receptors and a second slower component, mediated by α1-adrenoceptors. It is also recognized that sympathetic nerve-mediated contractions of the vas deferens can be modulated by acetylcholine (Ach), however there is considerable disagreement in the literature regarding the precise contribution of cholinergic nerves to contraction of the vas deferens. In this study we examined the effect of cholinergic modulators on electric field stimulation (EFS)-evoked contractions of rabbit vas deferens and on cytosolic Ca2+ levels in isolated vas deferens smooth muscle cells (VDSMC). The sustained component of EFS-evoked contractions was inhibited by atropine and by the selective M3R antagonist, 1,1-dimethyl-4-diphenylacetoxypiperidinium iodide (4-DAMP). EFS-evoked contractions were potentiated by Ach, carbachol (Cch), and neostigmine. The sustained phase of the EFS-evoked contraction was inhibited by prazosin, an α1-adrenoceptor antagonist and guanethidine, an inhibitor of noradrenaline release, even in the continued presence of Ach, Cch or neostigmine. The soluble guanylate cyclase (sGC) inhibitor, 1H-[1,2,4]Oxadiazolo[4,3-a]quinoxalin-1-one enhanced the amplitude of EFS-evoked contractions and reduced the inhibitory effects of 4-DAMP. Isolated VDSMC displayed spontaneous Ca2+ oscillations, but did not respond to Cch. However, the α1-adrenoceptor agonist, phenylephrine, evoked a Ca2+ transient and contracted the cells. These data suggest that EFS-evoked contractions of the rabbit vas deferens are potentiated by activation of M3 receptors and reduced by activation of a sGC-dependent inhibitory pathway.
We have described a technique for using labelled cations to measure the induction of electrolyte leakage in victorin-sensitive oat root cells caused by the host-specific toxin, victorin. The technique provides a rapid and sensitive way to measure leakage of specific labelled ions. By using the technique, we have demonstrated that the 86Rb leakage follows the same pattern as electrolyte leakage, in general, after victorin treatments. CaCl2 at 50 mM concentrations inhibits victorin activity as measured by 86Rb leakage. 45Ca retention is not affected by victorin the same as 86Rb or electrolytes in general. Some possible implications of the differential effects of victorin on45Ca and 86Rb in relation to the calcium's role in membrane function are discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.