The objective of this work was to design, construct and test the sample focusing and concentration enrichment device for gas chromatography. The device was based on four metal rings, between which a capillary column and two wire heaters were placed. The metal rings were connected to each other and cooled down using liquid nitrogen. The column was connected to the gas chromatography system using a heated transfer line. The research was conducted on how the length of the cooled column influences focusing and enrichment capabilities of the system. It was found that the analytes were focused better by using a longer cooled part of the column. The longer cooled column was also able to retain a greater volume of the analytes, injected consecutively. By using the 95 cm cooled column length, it was possible to retain 20 injections and detect a 20 times bigger peak area. By changing the temperature of the cooling zone, it was also observed that peak symmetry is heavily dependent on it. Lower cooled zone temperatures produced narrower and more symmetrical peaks.
A fast, precise and accurate high performance liquid chromatography method has been developed for the determination of dyes (Solvent Red 19 and Solvent Blue 35) and a marker (Solvent Yellow 124) in diesel. Separation was carried out on a 250 × 4.60 mm Agilent Zorbax Rx-SIL column (5 µm particle size). Detection was done in a visible wavelength range. The best performance of fuel dye separation and the shortest retention times were achieved when using hexane, toluene and ethyl acetate as a mobile phase. During this research the eluent composition and the elution gradient were optimized consequently that helped to perform the analysis within 15 min. The developed method was applied for the analysis of real samples of dyed diesel fuel. Preparation of the samples for the analysis simply consisted of filtering through a 0.45 µm filter previous to direct injection of the sample into the HPLC system for analysis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.