High-harmonic generation (HHG) traditionally combines ~100 near-infrared laser photons to generate bright, phase-matched, extreme ultraviolet beams when the emission from many atoms adds constructively. Here, we show that by guiding a mid-infrared femtosecond laser in a high-pressure gas, ultrahigh harmonics can be generated, up to orders greater than 5000, that emerge as a bright supercontinuum that spans the entire electromagnetic spectrum from the ultraviolet to more than 1.6 kilo-electron volts, allowing, in principle, the generation of pulses as short as 2.5 attoseconds. The multiatmosphere gas pressures required for bright, phase-matched emission also support laser beam self-confinement, further enhancing the x-ray yield. Finally, the x-ray beam exhibits high spatial coherence, even though at high gas density the recolliding electrons responsible for HHG encounter other atoms during the emission process.
Self-assembled cylindrical aggregates of amphiphilic carbocyanine dye molecules are interesting candidates
for synthetic light-harvesting systems and electronic energy transport wires. To be able to optimize the properties
of such systems, detailed information on the molecular structure as well as the static and dynamic optical
properties is required. We report cryo-transmission electron microscopy (cryo-TEM) experiments on 3,3‘-bis(3-sulfopropyl)-5,5‘,6,6‘-tetrachloro-1,1‘-dioctylbenzimidacarbocyanine (C8S3) aggregates that reveal a
double-layer tubular structure. By combining these results with information from both isotropic and polarized
spectral responses, a detailed molecular picture of these aggregates is obtained. The basis of our theoretical
analysis of the spectroscopic data is the formation of the inner and outer cylinders by rolling cyanine sheets
with a brick-layer structure onto cylindrical surfaces with diameters of 11 and 16 nm. This model very well
reproduces the spectral properties of the excitonic transitions of the C8S3 aggregates. The combination of
experimental and theoretical techniques for the first time provides detailed insight into the molecular
arrangement inside these aggregates.
We demonstrate a compact 20 Hz repetition-rate mid-IR OPCPA system operating at a central wavelength of 3900 nm with the tail-to-tail spectrum extending over 600 nm and delivering 8 mJ pulses that are compressed to 83 fs (<7 optical cycles). Because of the long optical period (∼13 fs) and a high peak power, the system opens a range of unprecedented opportunities for tabletop ultrafast science and is particularly attractive as a driver for a highly efficient generation of ultrafast coherent x-ray continua for biomolecular and element specific imaging.
The amphiphilic dye 3,3'-bis(2-sulfopropyl)-5,5',6,6'-tetrachloro-1,1'-dioctylbenzimidacarbocyanine (C8S3) self-aggregates in aqueous solution to form tubular J-aggregates with a diameter of 17.0 +/- 0.5 nm, a wall thickness of approximately 4 nm, and a length exceeding several hundred nanometers. The absorption spectrum shows the typical features expected for tubular J-aggregates with several sharp and red-shifted absorption bands. Morphological investigations using cryo-transmission electron microscopy (cryo-TEM) and spectroscopic investigations reveal a high stability of the tubular morphology but a tendency of the aggregates to assemble into ropelike bundles after several weeks of storage. It is found that aggregation in solutions containing additives such as alcohols or surfactants results in the formation of new types of aggregates. A second type of tubular aggregate with a diameter of 13.0 +/- 0.5 nm is observed when the solutions contain more than 10 wt % MeOH. On the time scale of days these tubular aggregates transform into ribbonlike structures characterized by a new absorption spectrum, and they convert after several weeks into giant tubes with diameters of up to 500 nm.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.