Research on Artificial Intelligence and Psychology has traditionally been heavily intertwined. Thus, it is surprising that the ideas of Marvin Minsky (1927-2016) have not gained more interest among researchers in Psychology. One specific idea that persisted over decades in Minsky’s work was that of the mind as a difference-engine. The idea posits that as soon as there is a goal, the mind works to reduce or eliminate the important differences between the current state and some desired goal. Several aspects of this idea precede Minsky and have already proved fruitful for psychological researchers, yet there are aspects that deserve further work.
In 1956, Brunswik proposed a definition of what he called intuitive and analytic cognitive processes, not in terms of verbally specified properties, but operationally based on the observable error distributions. In the decades since, the diagnostic value of error distributions has generally been overlooked, arguably because of a long tradition to consider the error as exogenous (and irrelevant) to the process. Based on Brunswik’s ideas, we develop the precise/not precise (PNP) model, using a mixture distribution to model the proportion of error-perturbed versus error-free executions of an algorithm, to determine if Brunswik’s claims can be replicated and extended. In Experiment 1, we demonstrate that the PNP model recovers Brunswik’s distinction between perceptual and conceptual tasks. In Experiment 2, we show that also in symbolic tasks that involve no perceptual noise, the PNP model identifies both types of processes based on the error distributions. In Experiment 3, we apply the PNP model to confirm the often-assumed “quasi-rational” nature of the rule-based processes involved in multiple-cue judgment. The results demonstrate that the PNP model reliably identifies the two cognitive processes proposed by Brunswik, and often recovers the parameters of the process more effectively than a standard regression model with homogeneous Gaussian error, suggesting that the standard Gaussian assumption incorrectly specifies the error distribution in many tasks. We discuss the untapped potentials of using error distributions to identify cognitive processes and how the PNP model relates to, and can enlighten, debates on intuition and analysis in dual-systems theories.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.