Regression test selection (RTS) aims to reduce regression testing time by only re-running the tests affected by code changes. Prior research on RTS can be broadly split into dynamic and static techniques. A recently developed dynamic RTS technique called Ekstazi is gaining some adoption in practice, and its evaluation shows that selecting tests at a coarser, class-level granularity provides better results than selecting tests at a finer, method-level granularity. As dynamic RTS is gaining adoption, it is timely to also evaluate static RTS techniques, some of which were proposed over three decades ago but not extensively evaluated on modern software projects.This paper presents the first extensive study that evaluates the performance benefits of static RTS techniques and their safety; a technique is safe if it selects to run all tests that may be affected by code changes. We implemented two static RTS techniques, one class-level and one methodlevel, and compare several variants of these techniques. We also compare these static RTS techniques against Ekstazi, a state-of-the-art, class-level, dynamic RTS technique. The experimental results on 985 revisions of 22 open-source projects show that the class-level static RTS technique is comparable to Ekstazi, with similar performance benefits, but at the risk of being unsafe sometimes. In contrast, the method-level static RTS technique performs rather poorly.
Regression testing is an important activity but can get expensive for large test suites. Test-suite reduction speeds up regression testing by identifying and removing redundant tests based on a given set of requirements. Traditional research on test-suite reduction is rather diverse but most commonly shares three properties: (1) requirements are defined by a coverage criterion such as statement coverage;(2) the reduced test suite has to satisfy all the requirements as the original test suite; and (3) the quality of the reduced test suites is measured on the software version on which the reduction is performed. These properties make it hard for test engineers to decide how to use reduced test suites.We address all three properties of traditional test-suite reduction: (1) we evaluate test-suite reduction with requirements defined by killed mutants; (2) we evaluate inadequate reduction that does not require reduced test suites to satisfy all the requirements; and (3) we propose evolution-aware metrics that evaluate the quality of the reduced test suites across multiple software versions. Our evaluations allow a more thorough exploration of trade-offs in test-suite reduction, and our evolution-aware metrics show how the quality of reduced test suites can change after the version where the reduction is performed. We compare the trade-offs among various reductions on 18 projects with a total of 261,235 tests over 3,590 commits and a cumulative history spanning 35 years of development. Our results help test engineers make a more informed decision about balancing size, coverage, and fault-detection loss of reduced test suites.
Regression testing provides important pass or fail signals that developers use to make decisions after code changes. However, flaky tests, which pass or fail even when the code has not changed, can mislead developers. A common kind of flaky tests are order-dependent tests, which pass or fail depending on the order in which the tests are run. Fixing order-dependent tests is often tedious and time-consuming. We propose iFixFlakies, a framework for automatically fixing order-dependent tests. The key insight in iFixFlakies is that test suites often already have tests, which we call helpers, whose logic resets or sets the states for order-dependent tests to pass. iFixFlakies searches a test suite for helpers that make the order-dependent tests pass and then recommends patches for the order-dependent tests using code from these helpers. Our evaluation on 110 truly orderdependent tests from a public dataset shows that 58 of them have helpers, and iFixFlakies can fix all 58. We opened pull requests for 56 order-dependent tests (2 of 58 were already fixed), and developers have already accepted pull requests for 21 of them, with all the remaining ones still pending. CCS CONCEPTS • Software and its engineering → Software testing and debugging.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.