Thick ellipsoids were recently introduced by the authors to represent uncertainty in state variables of dynamic systems, not only in terms of guaranteed outer bounds but also in terms of an inner enclosure that belongs to the true solution set with certainty. Because previous work has focused on the definition and computationally efficient implementation of arithmetic operations and extensions of nonlinear standard functions, where all arguments are replaced by thick ellipsoids, this paper introduces novel operators for specifically evaluating quasi-linear system models with bounded parameters as well as for the union and intersection of thick ellipsoids. These techniques are combined in such a way that a discrete-time state observer can be designed in a predictor-corrector framework. Estimation results are presented for a combined observer-based estimation of state variables as well as disturbance forces and torques in the sense of an unknown input estimator for a hovercraft.
The verified simulation of initial value problems (IVPs) for ordinary differential equations (ODEs) with uncertain parameters is an up-to-date research topic and a basic building block for predictor-corrector type state estimators. Such state estimators are based on a two-stage procedure: First, the continuous-time state equations are evaluated up to the discrete time instant at which new measured data become available. Second, the forecasted state enclosures need to be refined by accounting for the information provided by the available sensors. In this paper, we focus on the first stage by presenting a novel ellipsoidal enclosure technique for continuous-time processes. It is based on thick ellipsoids and temporal Taylor series for a verified integration of ODEs that in combination allow for determining inner and outer bounds for the domains of reachable states. Comparisons with other set-valued integration techniques conclude this paper.
In this paper, we propose a new approach to prove stability of non-linear discrete-time systems. After introducing the new concept of stability contractor, we show that the interval centred form plays a fundamental role in this context and makes it possible to easily prove asymptotic stability of a discrete system. Then, we illustrate the principle of our approach through theoretical examples. Finally, we provide two practical examples using our method : proving stability of a localisation system and that of the trajectory of a robot.
Stability contractors, based on interval analysis, were introduced in recent work as a tool to verify stability domains for nonlinear dynamic systems. These contractors rely on the property that - in case of provable asymptotic stability - a certain domain in a multi-dimensional state space is mapped into its interior after a certain integration time for continuous-time processes or after a certain number of discretization steps in a discrete-time setting. However, a disadvantage of the use of axis-aligned interval boxes in such computations is the omnipresent wrapping effect. As shown in this contribution, the replacement of classical interval representations by ellipsoidal domain enclosures reduces this undesirable effect. It also helps to find suitable ratios for the edge lengths if interval-based domain representations are investigated. Moreover, ellipsoidal domains naturally represent the possible regions of attraction of asymptotically stable equilibrium points that can be analyzed with the help of quadratic Lyapunov functions, for which stability criteria can be cast into linear matrix inequality (LMI) constraints. For that reason, this paper further presents possible interfaces of ellipsoidal enclosure techniques with LMI approaches. This combination aims at the maximization of those domains that can be proven to be stable for a discrete-time range-only localization algorithm in robotics. There, an Extended Kalman Filter (EKF) is applied to a system for which the dynamics are characterized by a discrete-time integrator disturbance model with additive Gaussian noise. In this scenario, the measurement equations correspond to the distances between the object to be localized and beacons with known positions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.