The ‘social intelligence hypothesis’ was originally conceived to explain how primates may have evolved their superior intellect and large brains when compared with other animals. Although some birds such as corvids may be intellectually comparable to apes, the same relationship between sociality and brain size seen in primates has not been found for birds, possibly suggesting a role for other non-social factors. But bird sociality is different from primate sociality. Most monkeys and apes form stable groups, whereas most birds are monogamous, and only form large flocks outside of the breeding season. Some birds form lifelong pair bonds and these species tend to have the largest brains relative to body size. Some of these species are known for their intellectual abilities (e.g. corvids and parrots), while others are not (e.g. geese and albatrosses). Although socio-ecological factors may explain some of the differences in brain size and intelligence between corvids/parrots and geese/albatrosses, we predict that the type and quality of the bonded relationship is also critical. Indeed, we present empirical evidence that rook and jackdaw partnerships resemble primate and dolphin alliances. Although social interactions within a pair may seem simple on the surface, we argue that cognition may play an important role in the maintenance of long-term relationships, something we name as ‘relationship intelligence’.
Parrots and corvids show outstanding innovative and flexible behaviour. In particular, kea and New Caledonian crows are often singled out as being exceptionally sophisticated in physical cognition, so that comparing them in this respect is particularly interesting. However, comparing cognitive mechanisms among species requires consideration of non-cognitive behavioural propensities and morphological characteristics evolved from different ancestry and adapted to fit different ecological niches. We used a novel experimental approach based on a Multi-Access-Box (MAB). Food could be extracted by four different techniques, two of them involving tools. Initially all four options were available to the subjects. Once they reached criterion for mastering one option, this task was blocked, until the subjects became proficient in another solution. The exploratory behaviour differed considerably. Only one (of six) kea and one (of five) NCC mastered all four options, including a first report of innovative stick tool use in kea. The crows were more efficient in using the stick tool, the kea the ball tool. The kea were haptically more explorative than the NCC, discovered two or three solutions within the first ten trials (against a mean of 0.75 discoveries by the crows) and switched more quickly to new solutions when the previous one was blocked. Differences in exploration technique, neophobia and object manipulation are likely to explain differential performance across the set of tasks. Our study further underlines the need to use a diversity of tasks when comparing cognitive traits between members of different species. Extension of a similar method to other taxa could help developing a comparative cognition research program.
Overriding motor impulses instigated by salient perceptual stimuli represent a fundamental inhibitory skill. Such motor self-regulation facilitates more rational behaviour, as it brings economy into the bodily interaction with the physical and social world. It also underlies certain complex cognitive processes including decision making. Recently, MacLean et al. (MacLean et al. 2014 Proc. Natl Acad. Sci. USA 111, 2140–2148. (doi:10.1073/pnas.132353311110.1073/pnas.1323533111)) conducted a large-scale study involving 36 species, comparing motor self-regulation across taxa. They concluded that absolute brain size predicts level of performance. The great apes were most successful. Only a few of the species tested were birds. Given birds' small brain size—in absolute terms—yet flexible behaviour, their motor self-regulation calls for closer study. Corvids exhibit some of the largest relative avian brain sizes—although small in absolute measure—as well as the most flexible cognition in the animal kingdom. We therefore tested ravens, New Caledonian crows and jackdaws in the so-called cylinder task. We found performance indistinguishable from that of great apes despite the much smaller brains. We found both absolute and relative brain volume to be a reliable predictor of performance within Aves. The complex cognition of corvids is often likened to that of great apes; our results show further that they share similar fundamental cognitive mechanisms.
Leaf fossil record suggests limited influence of atmospheric CO 2 on terrestrial productivity prior to angiosperm evolution. Proc. Natl.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.