Treating reference frames fundamentally as quantum systems is inevitable in quantum gravity and also in quantum foundations once considering laboratories as physical systems. Both fields thereby face the question of how to describe physics relative to quantum reference systems and how the descriptions relative to different such choices are related. Here, we exploit a fruitful interplay of ideas from both fields to begin developing a unifying approach to transformations among quantum reference systems that ultimately aims at encompassing both quantum and gravitational physics. In particular, using a gravity inspired symmetry principle, which enforces physical observables to be relational and leads to an inherent redundancy in the description, we develop a perspectiveneutral structure, which contains all frame perspectives at once and via which they are changed. We show that taking the perspective of a specific frame amounts to a fixing of the symmetry related redundancies in both the classical and quantum theory and that changing perspective corresponds to a symmetry transformation. We implement this using the language of constrained systems, which naturally encodes symmetries. Within a simple one-dimensional model, we recover some of the quantum frame transformations of [1], embedding them in a perspective-neutral framework. Using them, we illustrate how entanglement and classicality of an observed system depend on the quantum frame perspective. Our operational language also inspires a new interpretation of Dirac and reduced quantized theories as perspective-neutral and perspectival quantum theories, respectively, and reveals the link between them. In this light, we suggest a new take on the relation between a 'quantum general covariance' and the diffeomorphism symmetry in quantum gravity. * p.hoehn@univie.ac.at arXiv:1809.00556v2 [quant-ph]
Every clock is a physical system and thereby ultimately quantum. A naturally arising question is thus how to describe time evolution relative to quantum clocks and, specifically, how the dynamics relative to different quantum clocks are related. This is a particularly pressing issue in view of the multiple choice facet of the problem of time in quantum gravity, which posits that there is no distinguished choice of internal clock in generic general relativistic systems and that different choices lead to inequivalent quantum theories. Exploiting a recent unifying approach to switching quantum reference systems [Vanrietvelde et al 2020 Quantum 4 225; Vanrietvelde et al 2018 arXiv:1809.05093[quant-ph])], we exhibit a systematic method for switching between different clock choices in the quantum theory. We illustrate it by means of the parametrized particle, which, like gravity, features a Hamiltonian constraint. We explicitly switch between the quantum evolution relative to the non-relativistic time variable and that relative to the particle’s position, which requires carefully regularizing the zero-modes in the so-called time-of-arrival observable. While this toy model is simple, our approach is general and, in particular, directly amenable to quantum cosmology. It proceeds by systematically linking the reduced quantum theories relative to different clock choices via the clock-choice-neutral Dirac quantized theory, in analogy to coordinate changes on a manifold. This method suggests a new perspective on the multiple choice problem, indicating that it is rather a multiple choice feature of the complete relational quantum theory, taken as the conjunction of Dirac quantized and quantum deparametrized theories. Precisely this conjunction permits one to consistently switch between different temporal reference systems, which is a prerequisite for a quantum notion of general covariance. Finally, we show that quantum uncertainties generically lead to a discontinuity in the relational dynamics when switching clocks, in contrast to the classical case.
Given the importance of quantum reference systems to both quantum and gravitational physics, it is pertinent to develop a systematic method for switching between the descriptions of physics relative to different choices of quantum reference systems, which is valid in both fields. Here, we continue with such a unifying approach, begun in [1], whose key ingredients are an operational language and a gravity-inspired symmetry principle. The latter enforces physics to be relational and leads, thanks to gauge related redundancies, to a perspective-neutral structure which contains all frame choices at once and via which frame perspectives can be consistently switched. Formulated in the language of constrained systems, the perspective-neutral structure turns out to be the constraint surface classically and the gauge invariant Hilbert space in the Dirac quantized theory. By contrast, a perspective relative to a specific frame corresponds to a gauge choice and the associated reduced phase and Hilbert space. Quantum reference frame switches thereby amount to a symmetry transformation. In the quantum theory, they require a transformation that takes one from the Dirac to a reduced quantum theory and we show that it amounts to a trivialization of the constraints and a subsequent projection onto the classical gauge fixing conditions. We illustrate this method in a general mechanical particle model, namely the relational N -body problem in three-dimensional space with rotational and translational symmetry. This model is particularly interesting because it features the generic Gribov problem so that globally valid gauge fixing conditions are impossible which, in turn, implies also that globally valid relational frame perspectives are absent in both the classical and quantum theory. We will show that the constraint surface is topologically non-trivial and foliated by three-, five-and six-dimensional gauge orbits, where the lower dimensional orbits are a set of measure zero. In consequence, the N -body problem also does not admit globally valid canonically conjugate pairs of Dirac observables. These challenges notwithstanding, we exhibit how one can systematically construct the quantum reference frame transformations for the three-body problem.
We argue that the quantum-theoretical structures studied in several recent lines of research cannot be adequately described within the standard framework of quantum circuits. This is in particular the case whenever the combination of subsystems is described by a nontrivial blend of direct sums and tensor products of Hilbert spaces. We therefore propose an extension to the framework of quantum circuits, given by routed linear maps and routed quantum circuits. We prove that this new framework allows for a consistent and intuitive diagrammatic representation in terms of circuit diagrams, applicable to both pure and mixed quantum theory, and exemplify its use in several situations, including the superposition of quantum channels and the causal decompositions of unitaries. We show that our framework encompasses the `extended circuit diagrams' of Lorenz and Barrett [arXiv:2001.07774 (2020)], which we derive as a special case, endowing them with a sound semantics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.