Quercetin is rapidly and avidly taken up by human red blood cells (RBC) via a passive diffusion mechanism, driven by flavonoid binding to haemoglobin and resulting in an almost quantitative accumulation of the flavonoid. Heamoglobin-free resealed ghosts accumulated quercetin exclusively in the membrane fraction. Cell-associated quercetin was biological active and could be quantitatively utilised to support the reduction of extracellular oxidants mediated by a transplasma-membrane oxido-reductase. Additional experimental evidence revealed that quercetin uptake declined in the presence of albumin and that, under these conditions, the amount of cell-associated quercetin is enhanced by increasing the RBC number. Quercetin release from flavonoid-preloaded RBC was observed only in the presence of albumin (or in human plasma) and this response was progressively inhibited upon incubation in solutions containing albumin previously exposed to increasing concentrations of quercetin and cleared of the unbound fraction of the flavonoid. Furthermore, exposure to quercetin pre-saturated albumin promoted accumulation of the flavonoid in fresh RBC and this response was a direct function of the extent of albumin saturation. These results, indicating a flow of quercetin from albumin to haemoglobin, and vice versa, are therefore consistent with the possibility that human RBC play a pivotal role in the distribution and bioavailability of circulating flavonoids.
Among the non-neurological functions of melatonin, much attention is being directed to the ability of melatonin to modulate the immune system, whose cells possess melatonin-specific receptors and biosynthetic enzymes. Melatonin controls cell behaviour by eliciting specific signal transduction actions after its interaction with plasma membrane receptors (MT(1), MT(2)); additionally, melatonin potently neutralizes free radicals. Melatonin regulates immune cell loss by antagonizing apoptosis. A major unsolved question is whether this is due to receptor involvement, or to radical scavenging considering that apoptosis is often dependent on oxidative alterations. Here, we provide evidence that on U937 monocytic cells, apoptosis is antagonized by melatonin by receptor interaction rather than by radical scavenging. First, melatonin and a set of synthetic analogues prevented apoptosis in a manner that is proportional to their affinity for plasma membrane receptors but not to their antioxidant ability. Secondly, melatonin's antiapoptotic effect required key signal transduction events including G protein, phospholipase C and Ca(2+) influx and, more important, it is sensitive to the specific melatonin receptor antagonist luzindole.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.