Age-related complications such as neurodegenerative disorders are increasing and remain cureless. The possibility of altering the progression or the development of these multifactorial diseases through diet is an emerging and attractive approach with increasing experimental support. We examined the potential of known bioavailable phenolic sulfates, arising from colonic metabolism of berries, to influence hallmarks of neurodegenerative processes. In silico predictions and in vitro transport studies across blood-brain barrier (BBB) endothelial cells, at circulating concentrations, provided evidence for differential transport, likely related to chemical structure. Moreover, endothelial metabolism of these phenolic sulfates produced a plethora of novel chemical entities with further potential bioactivies. Pre-conditioning with phenolic sulfates improved cellular responses to oxidative, excitotoxicity and inflammatory injuries and this attenuation of neuroinflammation was achieved via modulation of NF-κB pathway. Our results support the hypothesis that these small molecules, derived from dietary (poly)phenols may cross the BBB, reach brain cells, modulate microglia-mediated inflammation and exert neuroprotective effects, with potential for alleviation of neurodegenerative diseases.
Quinolones are a class of antibacterial agents for the treatment of several infectious diseases (e.g. urinary and respiratory tract infections). They are used worldwide due to their broad spectrum of activity, high bioavailability and good safety profile. The safety profile varies from quinolone to quinolone. The aim of this article was to review the neurological and psychiatric adverse drug reaction (ADR) profile of quinolones, using a literature search strategy designed to identify case reports and case series. A literature search using PubMed/MEDLINE (from inception to 31 October 2010) was performed to identify case reports and case series related to quinolone-associated neurological and psychiatric ADRs. The search was conducted in two phases: the first phase was the literature search and in the second phase relevant articles were identified through review of the references of the selected articles. Relevant articles were defined as articles referring to adverse events/reactions associated with the use of any quinolone. Abstracts referring to animal studies, clinical trials and observational studies were excluded. Identified case reports were analysed by age group, sex, active substances, dosage, concomitant medication, ambulatory or hospital-based event and seriousness, after Medical Dictionary for Regulatory Activities (MedDRA®) coding. From a total of 828 articles, 83 were identified as referring to nervous system and/or psychiatric disorders induced by quinolones. 145 individual case reports were extracted from the 83 articles. 40.7% of the individual case reports belonged to psychiatric disorders only, whereas 46.9% related to neurological disorders only. Eight (5.5%) individual case reports presented both neurological and psychiatric ADRs. Ciprofloxacin, ofloxacin and pefloxacin were the quinolones with more neurological and psychiatric ADRs reported in the literature. Ciprofloxacin has been extensively used worldwide, which may explain the higher number of reports, while for ofloxacin and pefloxacin, the number of reports may be over-representative. A total of 232 ADRs were identified from the selected articles, with 206 of these related to psychiatric and/or neurological ADRs. The other 26 were related to other body systems but were reported together with the reactions of interest. Mania, insomnia, acute psychosis and delirium were the most frequently reported psychiatric adverse events; grand mal convulsion, confusional state, convulsions and myoclonus were the most frequently reported neurological adverse events. Several aspects should be taken into account in the development of CNS adverse effects, such as the pharmacokinetics of quinolones, chemical structure and quinolone uptake in the brain. These events may affect not only susceptible patients but also 'healthy' patients.
BBB transport of BDP and hBDP components reinforces the health benefits of a diet rich in polyphenols in neurodegenerative disorders. Our results suggest some novel pathways and genes that may be involved in the neuroprotective mechanism of the BDP polyphenol components.
There is accumulating evidence that adult neurogenesis and dendritic plasticity in the hippocampus are neuroplastic phenomena, highly sensitive to the effects of chronic stress and treatment with most classes of antidepressant drugs, being involved in the onset and recovery from depression. However, the effects of antidepressants that act through the selective inhibition of monoamine oxidase subtype A (MAO-A) in these phenomena are still largely unknown. In the present study, adult neurogenesis and neuronal morphology were examined in the hippocampus of rats exposed to chronic mild stress (CMS) and treated with the selective reversible MAO-A inhibitor (RIMA) drug, pirlindole and the selective serotonin reuptake inhibitor (SSRI), fluoxetine. The results provide the first demonstration that selective MAO-A inhibition with pirlindole is able to revert the behavioural effects of stress exposure while promoting hippocampal adult neurogenesis and rescuing the stress-induced dendritic atrophy of granule neurons.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.