A comparative evaluation of alternative methane reforming processes as an option to steam reforming was performed by carrying out simulations of operations in a fixed bed reactor with a Ni (4.8 wt.%/γ-Al2O3) catalyst at 1023 K under 1.0 bar. Methane reforms, including processing with carbon dioxide (DRM, CH4/CO2), autothermal reform (ATRM, CH4/H2O/O2), and combined reform (CRM, CH4/CO2/H2O/O2) had their operations predicted based on experimental data developed to represent their kinetic behavior, formalized with mechanisms and parametric quantifications. The performance of fixed bed reactor operations for methane conversions occurred with different reaction rates in the three alternative processes, and comparatively the orders of magnitude were 102, 10−1, and 10−4 in CRM, ATRM, and DRM, respectively. According to each process, the methane conversions were oriented towards the predominant productions of hydrogen or carbon monoxide, indicating the kinetic selectivities of H2, 86.1% and CO, 59.2% in CRM and DRM, respectively. Considering the possibility of catalyst deactivation by carbon deposition, its predicted yields are low due to the slow stages of its production and due to its simultaneous consumption through interactions with O2, CO2, and H2O, reflecting favorably in additional productions of H2 and CO.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.