In a previous study of prevalidation, a standard operating procedure (SOP) for two independent in vitro tests (human and mouse) had been developed, to evaluate the potential hematotoxicity of xenobiotics from their direct and the adverse effects on granulocyte-macrophages (CFU-GM). A predictive model to calculate the human maximum tolerated dose (MTD) was set up, by adjusting a mouse-derived MTD for the differential interspecies sensitivity. In this paper, we describe an international blind trial designed to apply this model to the clinical neutropenia, by testing 20 drugs, including 14 antineoplastics (Cytosar-U, 5-Fluorouracil, Myleran, Thioguanine, Fludarabine, Bleomycin, Methotrexate, Gemcitabine, Carmustine, Etoposide, Teniposide, Cytoxan, Taxol, Adriamycin); two antivirals (Retrovir, Zovirax,); three drugs for other therapeutic indications (Cyclosporin, Thorazine, Indocin); and one pesticide (Lindane). The results confirmed that the SOP developed generates reproducible IC90 values with both human and murine GM-CFU. For 10 drugs (Adriamycin, Bleomycin, Etoposide, Fludarabine, 5-Fluorouracil, Myleran, Taxol, Teniposide, Thioguanine, and Thorazine), IC90 values were found within the range of the actual drug doses tested (defined as the actual IC90). For the other 10 drugs (Carmustine, Cyclosporin, Cytosar-U, Cytoxan, Gemcitabine, Indocin, Lindane, Methotrexate, Retrovir, and Zovirax) extrapolation on the regression curve out of the range of the actual doses tested was required to derive IC90 values (extrapolated IC90). The model correctly predicted the human MTD for 10 drugs out of 10 that had "actual IC90 values" and 7 drugs out of 10 for those having only an extrapolated IC90. Two of the incorrect predictions (Gemcitabine and Zovirax) were within 6-fold of the correct MTD, instead of the 4-fold range required by the model, whereas the prediction with Cytosar-U was approximately 10-fold in error. A possible explanation for the failure in the prediction of these three drugs, which are pyrimidine analogs, is discussed. We concluded that our model correctly predicted the human MTD for 20 drugs out of 23, since the other three drugs (Topotecan, PZA, and Flavopiridol) were tested in the prevalidation study. The high percentage of predicitivity (87%), as well as the reproducibility of the SOP testing, confirm that the model can be considered scientifically validated in this study, suggesting promising applications to other areas of research in developing validated hematotoxicological in vitro methods.