The ATLAS CollaborationThe observation of Higgs boson production in association with a top quark pair (ttH), based on the analysis of proton-proton collision data at a centre-of-mass energy of 13 TeV recorded with the ATLAS detector at the Large Hadron Collider, is presented. Using data corresponding to integrated luminosities of up to 79.8 fb −1 , and considering Higgs boson decays into bb, WW * , τ + τ − , γγ, and Z Z * , the observed significance is 5.8 standard deviations, compared to an expectation of 4.9 standard deviations. Combined with the ttH searches using a dataset corresponding to integrated luminosities of 4.5 fb −1 at 7 TeV and 20.3 fb −1 at 8 TeV, the observed (expected) significance is 6.3 (5.1) standard deviations. Assuming Standard Model branching fractions, the total ttH production cross section at 13 TeV is measured to be 670 ± 90 (stat.) +110 −100 (syst.) fb, in agreement with the Standard Model prediction.
Search for new phenomena in high-mass diphoton final states using 37 fb −1 of proton-proton collisions collected at √ s = 13 TeV with the ATLAS detectorThe ATLAS Collaboration Searches for new phenomena in high-mass diphoton final states with the ATLAS experiment at the LHC are presented. The analysis is based on pp collision data corresponding to an integrated luminosity of 36.7 fb −1 at a centre-of-mass energy √ s = 13 TeV recorded in 2015 and 2016. Searches are performed for resonances with spin 0, as predicted by theories with an extended Higgs sector, and for resonances with spin 2, using a warped extra-dimension model as a benchmark model, as well as for non-resonant signals, assuming a large extradimension scenario. No significant deviation from the Standard Model is observed. Upper limits are placed on the production cross section times branching ratio to two photons as a function of the resonance mass. In addition, lower limits are set on the ultraviolet cutoff scale in the large extra-dimensions model. c 2017 CERN for the benefit of the ATLAS Collaboration. 1 The ATLAS experiment uses a right-handed coordinate system with its origin at the nominal interaction point (IP) in the centre of the detector and the z-axis along the beam pipe. The x-axis points from the IP to the centre of the LHC ring, and the y-axis points upward. Cylindrical coordinates (r, φ) are used in the transverse plane, φ being the azimuthal angle around the z-axis. The pseudorapidity is defined in terms of the polar angle θ as η = − ln tan(θ/2). The transverse energy is defined as3 Simulated Monte Carlo (MC) events are used for optimizing the search strategy [23], and for the signal and background modelling studies detailed in Sections 5 and 6, respectively. Interference effects between the resonant signal and the background processes are neglected.The spin-0 signal MC samples were generated using the effective-field-theory approach implemented in MadGraph5_aMC@NLO [24] version 2.3.3 at next-to-leading order (NLO) in quantum chromodynamics (QCD). From the Higgs characterization framework [25], CP-even dimension-five operators coupling the new resonance to gluons and photons were included. Samples were generated with the NNPDF3.0 NLO parton distribution functions (PDFs) [26], using the A14 set of tuned parameters (tune) of Pythia 8.186 [27,28] for the parton-shower and hadronization simulation. Simulated samples were produced for fixed values of the mass and width of the assumed resonance, spanning the range 200-2400 GeV for the mass, and the range from 4 MeV to 10% of the mass for the decay width. Choosing an improved signal model with an event generator different from the one used in Ref.[1] provides a description of the signal which is less sensitive to modelling effects from the off-shell region. The impact of this change is only visible in scenarios with a large signal decay width, with mass values at the TeV scale.Spin-2 signal samples for the RS1 model were generated using Pythia 8.186, with the NNPDF23LO PDF set [29] and the A1...
A search for new resonances decaying into a pair of jets is reported using the dataset of proton-proton collisions recorded at √ s = 13 TeV with the ATLAS detector at the Large Hadron Collider between 2015 and 2018, corresponding to an integrated luminosity of 139 fb −1. The distribution of the invariant mass of the two leading jets is examined for local excesses above a data-derived estimate of the Standard Model background. In addition to an inclusive dijet search, events with jets identified as containing b-hadrons are examined specifically. No significant excess of events above the smoothly falling background spectra is observed. The results are used to set cross-section upper limits at 95% confidence level on a range of new physics scenarios. Model-independent limits on Gaussian-shaped signals are also reported. The analysis looking at jets containing b-hadrons benefits from improvements in the jet flavour identification at high transverse momentum, which increases its sensitivity relative to the previous analysis beyond that expected from the higher integrated luminosity.
The algorithms used by the ATLAS Collaboration during Run 2 of the Large Hadron Collider to identify jets containing b-hadrons are presented. The performance of the algorithms is evaluated in the simulation and the efficiency with which these algorithms identify jets containing b-hadrons is measured in collision data. The measurement uses a likelihood-based method in a sample highly enriched in tt events. The topology of the t → W b decays is exploited to simultaneously measure both the jet flavour composition of the sample and the efficiency in a transverse momentum range from 20 to 600 GeV. The efficiency measurement is subsequently compared with that predicted by the simulation. The data used in this measurement, corresponding to a total integrated luminosity of 80.5 fb −1 , were collected in proton-proton collisions during the years 2015-2017 at a centre-of-mass energy √ s = 13 TeV. By simultaneously extracting both the efficiency and jet flavour composition, this measurement significantly improves the precision compared to previous results, with uncertainties ranging from 1 to 8% depending on the jet transverse momentum.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.