The goal is to build and stabilize a robot balancing on twin balls. The robot consists of six omni wheels in a special configuration standing on twin balls which gives it inverse pendulum dynamics. The robot is stabilized by rotating the wheels which makes it move in the xy-plane. First, the kinematics of omni wheels was investigated by studying different mounting configurations on platforms moving on the ground. The robot was built to verify and visualize the kinematics and special properties of omni wheels. The model is derived from energy equations and using Euler-Lagrange formulation. The energy equations are potential and kinetic energies. The obtained equations relate torque to Twin Spherical Balls Robot parameters.
This paper describes a new approach for the visual pose estimation of an uncertain robotic manipulator using ANFIS (Artificial Neuro-Fuzzy Inference System) and two uncalibrated cameras. The main emphasis of this work is on the ability to estimate the positioning accuracy and repeatability of a low-cost robotic arm with unknown parameters under uncalibrated vision system. The vision system is composed of two cameras; installed on the top and on the lateral side of the robot, respectively. These two cameras need no calibration; thus, they can be installed in any position and orientation with just the condition that the end-effector of the robot must remain always visible. A red-colored feature point is fixed on the end of the third robotic arm link. In this study, captured image data via two fixed-cameras vision system are used as the sensor feedback for the position tracking of an uncertain robotic arm. LabVolt R5150 manipulator in our laboratory is used as case study. The visual estimation system is trained using ANFIS with subtractive clustering method in MATLAB. In MATLAB, the robot, feature point and cameras are simulated as physical behaviors. To get the required data for ANFIS, the manipulator was maneuvered within its workspace using forward kinematics and the feature point image coordinates were acquired with the two cameras. Simulation experiments show that the location of the robotic arm can be trained in ANFIS using two uncalibrated cameras; and problems for computational complexity and calibration requirement of multi-view geometry can be eliminated. Observing Mean Square Error (MSE), Root Mean Square Error (RMSE), Error Mean and Standard Deviation Errors, the performance of the proposed approach is efficient for using as visual feedback in uncertain robotic manipulator. Further, the proposed approach using ANFIS and uncalibrated vision system has better in flexibility, user-friendly manner and computational concepts over conventional techniques.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.