Summary Background The Greater Mekong subregion is a recurrent source of antimalarial drug resistance in Plasmodium falciparum malaria. This study aimed to characterise the extent and spread of resistance across this entire region between 2007 and 2018. Methods P falciparum isolates from Myanmar, Thailand, Laos, and Cambodia were obtained from clinical trials and epidemiological studies done between Jan 1, 2007, and Dec 31, 2018, and were genotyped for molecular markers ( pfkelch, pfcrt, pfplasmepsin2 , and pfmdr1 ) of antimalarial drug resistance. Genetic relatedness was assessed using microsatellite and single nucleotide polymorphism typing of flanking sequences around target genes. Findings 10 632 isolates were genotyped. A single long pfkelch Cys580Tyr haplotype (from −50 kb to +31·5 kb) conferring artemisinin resistance (PfPailin) now dominates across the eastern Greater Mekong subregion. Piperaquine resistance associated with pfplasmepsin2 gene amplification and mutations in pfcrt downstream of the Lys76Thr chloroquine resistance locus has also developed. On the Thailand–Myanmar border a different pfkelch Cys580Tyr lineage rose to high frequencies before it was eliminated. Elsewhere in Myanmar the Cys580Tyr allele remains widespread at low allele frequencies. Meanwhile a single artemisinin-resistant pfkelch Phe446Ile haplotype has spread across Myanmar. Despite intense use of dihydroartemisinin–piperaquine in Kayin state, eastern Myanmar, both in treatment and mass drug administrations, no selection of piperaquine resistance markers was observed. pfmdr1 amplification, a marker of resistance to mefloquine, remains at low prevalence across the entire region. Interpretation Artemisinin resistance in P falciparum is now prevalent across the Greater Mekong subregion. In the eastern Greater Mekong subregion a multidrug resistant P falciparum lineage (PfPailin) dominates. In Myanmar a long pfkelch Phe446Ile haplotype has spread widely but, by contrast with the eastern Greater Mekong subregion, there is no indication of artemisinin combination therapy (ACT) partner drug resistance from genotyping known markers, and no evidence of spread of ACT resistant P falciparum from the east to the west. There is still a window of opportunity to prevent global spread of ACT resistance. Funding Thailand Science Research and Innovation, Initiative 5%, Expertise France, Wellcome Trust.
Increasing drug resistance in Plasmodium falciparum to artemisinins and their ACT partner drugs jeopardises effective antimalarial treatment. Resistance is worst in the Greater Mekong Subregion. Monitoring genetic markers of resistance can help to guide antimalarial therapy. Markers of resistance to artemisinins ( PfKelch mutations), mefloquine (amplification of P. falciparum multidrug resistance-1, PfMDR1, ), and piperaquine ( PfPlasmepsin2/3 amplification and specific P. falciparum chloroquine resistance transporter, PfCRT, mutations) were assessed in 6,722 P. falciparum samples from Vietnam, Lao PDR, Cambodia, Thailand, Myanmar between 2007 and 2019. Against a high background prevalence of PfKelch mutations, PfMDR1 and PfPlasmepsin2/3 amplification closely followed regional drug pressures over time. PfPlasmepsin2/3 amplification preceded piperaquine-resistance associated PfCRT mutations in Cambodia, and reached a peak prevalence of 23/28 (82%) in 2015. This declined to 57/156 (38%) after changing first-line treatment away from dihydroartemisinin-piperaquine to artesunate-mefloquine (ASMQ) between 2014 and 2017. PfMDR1 amplification increased from 0/293 (0%) between 2012 and 2017 to 12/156 (8%) in 2019. Amplification of PfMDR1 and PfPlasmepsin2/3 in the same parasites was extremely rare (4/6,722; 0.06%) and dispersed over time. Mechanisms conferring mefloquine and piperaquine resistance may be counterbalancing. This supports the development of ASMQ plus piperaquine as a triple artemisinin combination therapy.
BackgroundAsymptomatic carriage of Plasmodium falciparum and Plasmodium vivax is common in both low-and high-transmission settings and represents an important reservoir of infection that needs to be targeted if malaria elimination is to succeed.MethodsMass blood examinations (475 individuals) were conducted in two villages in Mae Hong Son, an area of endemic but low-transmission malaria in the north-west of Thailand. The microscopist at the local malaria clinic did not detect any infections. Pools of four samples were screened by real-time PCR; individual members of all of the positive pools were then re-examined by expert microscopy and by a second species-specific PCR reaction.ResultsEight subjects were found to be positive by both PCR and expert microscopy and one was found to be positive by PCR alone. The slides contained asexual stage parasites of P. vivax, P. falciparum and Plasmodium malariae, but no gametocytes. The local clinic was notified within two to eight days of the survey.ConclusionA combination of pooling, real-time PCR and expert microscopy provides a feasible approach to identifying and treating asymptomatic malaria infections in a timely manner.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.