While machine learning and artificial intelligence have long been applied in networking research, the bulk of such works has focused on supervised learning. Recently there has been a rising trend of employing unsupervised machine learning using unstructured raw network data to improve network performance and provide services such as traffic engineering, anomaly detection, Internet traffic classification, and quality of service optimization. The interest in applying unsupervised learning techniques in networking emerges from their great success in other fields such as computer vision, natural language processing, speech recognition, and optimal control (e.g., for developing autonomous self-driving cars). Unsupervised learning is interesting since it can unconstrain us from the need of labeled data and manual handcrafted feature engineering thereby facilitating flexible, general, and automated methods of machine learning. The focus of this survey paper is to provide an overview of the applications of unsupervised learning in the domain of networking. We provide a comprehensive survey highlighting the recent advancements in unsupervised learning techniques and describe their applications for various learning tasks in the context of networking. We also provide a discussion on future directions and open research issues, while also identifying potential pitfalls. While a few survey papers focusing on the applications of machine learning in networking have previously been published, a survey of similar scope and breadth is missing in literature. Through this paper, we advance the state of knowledge by carefully synthesizing the insights from these survey papers while also providing contemporary coverage of recent advances.
Most modern in-memory online transaction processing (OLTP) engines rely on multi-version concurrency control (MVCC) to provide data consistency guarantees in the presence of conflicting data accesses. MVCC improves concurrency by generating a new version of a record on every write, thus increasing the storage requirements. Existing approaches rely on garbage collection and chain consolidation to reduce the length of version chains and reclaim space by freeing unreachable versions. However, finding unreachable versions requires the traversal of long version chains, which incurs random accesses right into the critical path of transaction execution, hence limiting scalability. This paper introduces OneShotGC, a new multi-version storage design that eliminates version traversal during garbage collection, with minimal discovery and memory management overheads. OneShotGC leverages the temporal correlations across versions to opportunistically cluster them into contiguous memory blocks that can be released in one shot. We implement OneShotGC in Proteus and use YCSB and TPC-C to experimentally evaluate its performance with respect to the state-of-the-art, where we observe an improvement of up to 2x in transactional throughput.
Modern Hybrid Transactional/Analytical Processing (HTAP) systems use an integrated data processing engine that performs analytics on fresh data, which are ingested from a transactional engine. HTAP systems typically consider data freshness at design time, and are optimized for a fixed range of freshness requirements, addressed at a performance cost for either OLTP or OLAP. The data freshness and the performance requirements of both engines, however, may vary with the workload. We approach HTAP as a scheduling problem, addressed at runtime through elastic resource management. We model an HTAP system as a set of three individual engines: an OLTP, an OLAP and a Resource and Data Exchange (RDE) engine. We devise a scheduling algorithm which traverses the HTAP design spectrum through elastic resource management, to meet the data freshness requirements of the workload. We propose an in-memory system design which is non-intrusive to the current state-of-art OLTP and OLAP engines, and we use it to evaluate the performance of our approach. Our evaluation shows that the performance benefit of our system for OLAP queries increases over time, reaching up to 50% compared to static schedules for 100 query sequences, while maintaining a small, and controlled, drop in the OLTP throughput. CCS CONCEPTS • Information systems → DBMS engine architectures; Main memory engines; Database transaction processing; Online analytical processing engines.
Understanding the performance of data-parallel workloads when resource-constrained has significant practical importance but unfortunately has received only limited attention. This paper identifies, quantifies and demonstrates memory elasticity, an intrinsic property of dataparallel tasks. Memory elasticity allows tasks to run with significantly less memory that they would ideally want while only paying a moderate performance penalty. For example, we find that given as little as 10% of ideal memory, PageRank and NutchIndexing Hadoop reducers become only 1.2x/1.75x and 1.08x slower. We show that memory elasticity is prevalent in the Hadoop, Spark, Tez and Flink frameworks. We also show that memory elasticity is predictable in nature by building simple models for Hadoop and extending them to Tez and Spark.To demonstrate the potential benefits of leveraging memory elasticity, this paper further explores its application to cluster scheduling. In this setting, we observe that the resource vs. time trade-off enabled by memory elasticity becomes a task queuing time vs task runtime trade-off. Tasks may complete faster when scheduled with less memory because their waiting time is reduced. We show that a scheduler can turn this task-level tradeoff into improved job completion time and cluster-wide memory utilization. We have integrated memory elasticity into Apache YARN. We show gains of up to 60% in average job completion time on a 50-node Hadoop cluster. Extensive simulations show similar improvements over a large number of scenarios.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.