BackgroundRecent studies have favored the use of cefazolin over nafcillin for the treatment of methicillin-susceptible Staphylococcus aureus (MSSA) bacteremia. The clinical influence of the cefazolin inoculum effect (CzIE) in the effectiveness of cephalosporins for severe MSSA infections has not been evaluated.MethodsWe prospectively included patients from 3 Argentinian hospitals with S. aureus bacteremia. Cefazolin minimum inhibitory concentrations (MICs) were determined at standard (105 colony-forming units [CFU]/mL) and high (107 CFU/mL) inoculum. The CzIE was defined as an increase of MIC to ≥16 µg/mL when tested at high inoculum. Whole-genome sequencing was performed in all isolates.ResultsA total of 77 patients, contributing 89 MSSA isolates, were included in the study; 42 patients (54.5%) had isolates with the CzIE. In univariate analysis, patients with MSSA exhibiting the CzIE had increased 30-day mortality (P = .034) and were more likely to have catheter-associated or unknown source of bacteremia (P = .033) compared with patients infected with MSSA isolates without the CzIE. No statistically significant difference between the groups was observed in age, clinical illness severity, place of acquisition (community vs hospital), or presence of endocarditis. The CzIE remained associated with increased 30-day mortality in multivariate analysis (risk ratio, 2.65; 95% confidence interval, 1.10–6.42; P = .03). MSSA genomes displayed a high degree of heterogeneity, and the CzIE was not associated with a specific lineage.ConclusionsIn patients with MSSA bacteremia where cephalosporins are used as firstline therapy, the CzIE was associated with increased 30-day mortality. Clinicians should be cautious when using cefazolin as firstline therapy for these infections.
Little is known about the population structure of vancomycin-resistant Enterococcus faecium (VREfm) in Latin America (LATAM). Here, we provide a complete genomic characterization of 55 representative Latin American VREfm recovered from 1998-2015 in 5 countries. The LATAM VREfm population is structured into two main clinical clades without geographical clustering. Using the LAtAM genomes, we reconstructed the global population of VREfm by including 285 genomes from 36 countries spanning from 1946 to 2017. In contrast to previous studies, our results show an early branching of animal related isolates and a further split of clinical isolates into two sub-clades within clade A. the overall phylogenomic structure of clade A was highly dependent on recombination (54% of the genome) and the split between clades A and B was estimated to have occurred more than 2,765 years ago. furthermore, our molecular clock calculations suggest the branching of animal isolates and clinical clades occurred ~502 years ago whereas the split within the clinical clade occurred ~302 years ago (previous studies showed a more recent split between clinical an animal branches around ~74 years ago). By including isolates from Latin America, we present novel insights into the population structure of VREfm and revisit the evolution of these pathogens. Enterococci are predominantly non-pathogenic gastrointestinal commensal bacteria that occasionally cause human infections. Among them, Enterococcus faecalis and Enterococcus faecium represent the species that account for most clinically relevant infections. In particular, E. faecium has been able to adapt to the hospital environment, emerging during the last few decades as a leading cause of health-care infections worldwide and becoming the most challenging enterococcal species to treat 1,2 .
Cefazolin has become a prominent therapy for methicillin-susceptible Staphylococcus aureus (MSSA) infections. However, an important concern is the cefazolin inoculum effect (CzIE), a phenomenon mediated by staphylococcal β-lactamases. Four variants of staphylococcal β-lactamases have been described based on serological methodologies and limited sequence information. Here, we sought to reassess the classification of staphylococcal β-lactamases and their correlation with the CzIE. We included a large collection of 690 contemporary bloodstream MSSA isolates recovered from Latin America, a region with a high prevalence of the CzIE. We determined cefazolin MICs at standard and high inoculums by broth microdilution. Whole-genome sequencing was performed to classify the β-lactamase in each isolate based on the predicted full sequence of BlaZ. We used the classical schemes for β-lactamase classification and compared it to BlaZ allotypes found in unique sequences using the genomic information. Phylogenetic analyses were performed based on the BlaZ and core-genome sequences. The overall prevalence of the CzIE was 40%. Among 641 genomes, type C was the most predominant β-lactamase (37%), followed by type A (33%). We found 29 allotypes and 43 different substitutions in BlaZ. A single allotype, designated BlaZ-2, showed a robust and statistically significant association with the CzIE. Two other allotypes (BlaZ-3 and BlaZ-5) were associated with a lack of the CzIE. Three amino acid substitutions (A9V, E112A, and G145E) showed statistically significant association with the CzIE (P = <0.01). CC30 was the predominant clone among isolates displaying the CzIE. Thus, we provide a novel approach to the classification of the staphylococcal β-lactamases with the potential to more accurately identify MSSA strains exhibiting the CzIE.
The cefazolin inoculum effect (CzIE) has been associated with therapeutic failures and mortality in invasive methicillin-susceptible Staphylococcus aureus (MSSA) infections. A diagnostic test to detect the CzIE is not currently available. We developed a rapid (∼3 h) CzIE colorimetric test to detect staphylococcal-β-lactamase (BlaZ) activity in supernatants after ampicillin induction. The test was validated using 689 bloodstream MSSA isolates recovered from Latin-America and US. Cefazolin MIC determination at high inoculum (107 CFU/mL) was used as reference standard (cut-off of ≥16 μg/mL). All isolates underwent genome sequencing. A total of 257 (37.3%) MSSA exhibited the CzIE by the reference standard method. The overall sensitivity and specificity of the colorimetric test was 82.5% and 88.9%, respectively. Sensitivity in MSSA isolates harboring type A BlaZ (most efficient enzyme against cefazolin) was 92.7% with a specificity of 87.8%. The performance of the test was lower against type B and C enzymes (sensitivities of 53.3% and 72.3%, respectively). When the reference value was set to ≥32 μg/mL the sensitivity for isolates carrying type A enzymes was 98.2%. Specificity was 100% for MSSA lacking blaZ. The overall negative predictive value ranged from 81.4% to 95.6% in Latin-American countries using published prevalence rates of the CzIE. MSSA from US were genetically diverse, with no distinguishing genomic differences from Latin-American MSSA, distributed among 18 sequence types. A novel test can readily identify most MSSA isolates exhibiting the CzIE, particularly those carrying type A BlaZ. In contrast to the MIC determination using high-inoculum, the rapid test is inexpensive, feasible and easy to perform. After minor validation steps, it could be incorporated into the routine clinical laboratory workflow.
BackgroundCefazolin is becoming first-line therapy for MSSA infections since it appears to be better tolerated than isoxazolyl penicillins with similar outcomes. An important concern when using cephalosporins as first-line therapy for MSSA is the CzIE, defined as MICs ≥ 16 µg/mL when performed at high bacterial inoculum (~107 CFU/mL) compared with standard inoculum (~105 CFU/mL). We postulated that release of BlaZ (a lipoprotein) to the extracellular milieu is the mechanism responsible for the CzIE. Confirmation of this phenomenon would permit developing a rapid test to identify this phenomenon in clinical settings.MethodsWe monitored the hydrolysis of 50 μM of nitrocefin by S. aureus supernatants after induction with ampicillin (150 µg/mL) for 1 h. A total of 150 μL of supernatants (after centrifugation) was incubated with 50 μM nitrocefin at 25°C in 20 mM HEPES, pH 7.4, 100 mM NaCl for 30 minutes. Nitrocefin hydrolysis was monitored by following the change in absorbance at 482 resulting from opening of the β-lactam ring of nitrocefin. Visual inspection to monitor color changes was also performed. We initially used 3 strains of MSSA, (i) S. aureus TX0117, a well-characterized strain that exhibits the CzIE; (ii) TX0117c, a derivative of TX0117 that harbors a mutation inactivating BlaZ and abolishing the CzIE, and (iii) ATCC 29213 a BlaZ-positive strain that lacks the CzIE. Subsequently, we validated the methodology in 10 South American isolates of different backgrounds that had been previously characterized for the CZIE.ResultsA statistically significant difference in ODs after 30 minutes was observed in TX0117 (CzIE) vs. TX0117c (no CzIE) and ATCC 29213 (no CzIE) (all P < 0.001), suggesting high BlaZ activity in supernatants of TX0117 and supporting the release of the enzyme as the main mechanism of the CzIE. All South American isolates that exhibited the CzIE were identified by the nitrocefin assay. Of note, isolates producing Type C BlaZ gave a weaker reaction, although still significantly different from isolates without the CzIE. Hydrolysis of nitrocefin was also readily detectable by visual inspection.ConclusionThe CzIE is likely due to release of BlaZ to the extracellular milieu. A rapid test that can readily identify MSSA strains exhibiting the CzIE is feasible.Disclosures W. Miller, Merck: Investigator, Research support. C. Arias, Merck & Co., Inc.: Grant Investigator, Research support; MeMed: Grant Investigator, Research support; Allergan: Grant Investigator, Research support.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.