To explore the relationships between denitrifying bacteria (DB) and sulfate-reducing bacteria (SRB) in H(2)-fed biofilms, we used two H(2)-based membrane biofilm reactors (MBfRs) with or without restrictions on H(2) availability. DB and SRB compete for H(2) and space in the biofilm, and sulfate (SO(4)(2-)) reduction should be out-competed when H(2) is limiting inside the biofilm. With H(2) availability restricted, nitrate (NO(3)(-)) reduction was proportional to the H(2) pressure and was complete at a H(2) pressure of 3 atm; SO(4)(2-) reduction began at H(2) ≥ 3.4 atm. Without restriction on H(2) availability, NO(3)(-) was the preferred electron acceptor, and SO(4)(2-) was reduced only when the NO(3)(-) surface loading was ≤ 0.13 g N/m(2)-day. We assayed DB and SRB by quantitative polymerase chain reaction targeting the nitrite reductases and dissimilatory sulfite reductase, respectively. Whereas DB and SRB increased with higher H(2) pressures when H(2) availability was limiting, SRB did not decline with higher NO(3)(-) removal flux when H(2) availability was not limiting, even when SO(4)(2-) reduction was absent. The SRB trend reflects that the SRB's metabolic diversity allowed them to remain in the biofilm whether or not they were reducing SO(4)(2-). In all scenarios tested, the SRB were able to initiate strong SO(4)(2-) reduction only when competition for H(2) inside the biofilm was relieved by nearly complete removal of NO(3)(-).
This work presents a multispecies biofilm model that describes the co-existence of nitrate- and sulfate-reducing bacteria in the H(2)-based membrane biofilm reactor (MBfR). The new model adapts the framework of a biofilm model for simultaneous nitrate and perchlorate removal by considering the unique metabolic and physiological characteristics of autotrophic sulfate-reducing bacteria that use H(2) as their electron donor. To evaluate the model, the simulated effluent H(2), UAP (substrate-utilization-associated products), and BAP (biomass-associated products) concentrations are compared to experimental results, and the simulated biomass distributions are compared to real-time quantitative polymerase chain reaction (qPCR) data in the experiments for parameter optimization. Model outputs and experimental results match for all major trends and explain when sulfate reduction does or does not occur in parallel with denitrification. The onset of sulfate reduction occurs only when the nitrate concentration at the fiber's outer surface is low enough so that the growth rate of the denitrifying bacteria is equal to that of the sulfate-reducing bacteria. An example shows how to use the model to design an MBfR that achieves satisfactory nitrate reduction, but suppresses sulfate reduction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.