The radiation response of 3 MeV proton-irradiated InGaP, InGaAsP and InGaAs solar cells was measured and analyzed in comparison with those of InP and GaAs. The degradation of the minority-carrier diffusion length was estimated from the spectral response data. The damage coefficient KL for the 3 MeV proton-irradiated InGaP, InGaAsP and InGaAs was also determined. The radiation resistance increases with an increase in the fraction of In–P bonds in InGaP, InGaAsP and InGaAs. Differences in the radiation resistance of InGaP, InGaAs and InGaAs materials are discussed. Minority-carrier injection under forward bias is found to cause partial recovery of the degradation on irradiated InGaP and InGaAsP cells.
The present extensive systematic study of defect introduction rates as a function of boron, gallium, oxygen, and carbon concentrations by means of deep level transient spectroscopy has drawn a quite complete picture towards the identification of the dominant radiation-induced defects in Si. The radiation-induced defect EV+0.36 eV has been identified as Ci–Oi complexes. The absence of an EC−0.18 eV complex center in gallium-doped samples and the linear dependence of its introduction rates on both the boron and oxygen content fixed its identification as the Bi–Oi complex in boron-doped Si. One of the technologically important results of present study is that the gallium appears to strongly suppress the radiation induced defects, especially hole level EV+0.36 eV (Ci–Oi), which is thought to act as a recombination center as well as the dominant compensating center at EC−0.18 eV (Bi–Oi). As a result, the effects of lifetime degradation and carrier removal could be partially offset to higher radiation fluences by using Ga as a dopant instead of boron in Si space solar cells. The anneal out of the new hole level EV+0.18 eV in gallium-doped samples at around 350 °C, together with recovery of free carrier concentration, suggests that this level may act as a donor-like center which compensates free carrier concentration in gallium-doped Si.
Articles you may be interested in A study of quantum well solar cell structures with bound-to-continuum transitions for reduced carrier recombination Appl. Phys. Lett. 102, 213903 (2013); 10.1063/1.4807506 Meyer-Neldel rule and the influence of entropy on capture cross-section determination in The Meyer-Neldel behavior reported for the emission probabilities of electrons and holes was included in our code, replacing the gap state capture cross sections of the Shockley-Read-Hall formalisms with capture cross sections containing an exponential function of the trap energy depth. The Meyer-Neldel energies for electrons and holes are the slopes of these exponentials. Our results indicate that emission probabilities of neutral states no deeper than approximately 0.45 eV and 0.37 eV from the conduction and valence band edges, respectively, can show a Meyer-Neldel behavior only, while on the other hand, its implementation in deeper gap states makes the replica-tion of experimental J-V curves of p-in solar cells and detectors impossible. The Meyer-Neldel behavior can be included in all neutral capture cross sections of acceptor-like tail states without affecting the J-V characteristics, while it cannot be included in all capture cross sections of neutral donor-like tail states and/or defect states without predicting device performances below the experimental figures, that become even lower when it is also included in charged capture cross sections. The implementation of the anti Meyer-Neldel behavior at tail states gives rise to slightly better and reasonable device performances. V C 2015 AIP Publishing LLC.
The status of Japanese development of super-high-efficiency In 0Á49 Ga 0Á51 P/ In 0Á01 GaAs/Ge multi-junction solar cells is reviewed. Key issues for a successful cell design are discussed, together with the technologies that have led to efficiency values of 29Á1% AM0 and >36% under concentrated 400 Â AM1Á5 illumination. The radiation resistance of the multi-junction solar cell is discussed, showing the degradation in performance for the InGaP, InGaAs and Ge junctions. Finally, some perspectives for further multi-junction cell development and alternative approaches to high efficiency are outlined.
The thermal annealing of nitrogen related traps in p-type InGaAsN and GaAsN is investigated by deep level transient spectroscopy (DLTS). Upon annealing, an apparent recovery of the photovoltaic properties correlates with changes in the DLTS data observed for InGaAsN and GaAsN diodes and solar cells, revealing that a nitrogen related E1 (EC−0.20eV) center has an important role in governing the solar cell performance. The large electron capture cross section (∼8.9×10−15cm2) of this center indicates that this defect may act as an efficient recombination center. Therefore, its complete removal by annealing or by some other process is essential for the high performance of GaInAsN solar cells. The internal quantum efficiency data were modeled to quantify the change in material properties associated with this improvement upon annealing. Annealed cells with indium impurity (InGaAsN) show a slightly higher photoresponse, which could be due to low scattering caused by In–N pair formation after annealing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.