Background, aim and scope After the discovery of chloroform in drinking water, an extensive amount of work has been dedicated to the factors influencing the formation of halogenated disinfections by-products (DBPs). The disinfection practice can vary significantly from one country to another. Whereas no disinfectant is added to many water supplies in Switzerland or no disinfectant residual is maintained in the distribution system, high disinfectant doses are applied together with high residual concentrations in the distribution system in other countries such as the USA or some southern European countries and Romania. In the present study, several treatment plants in the Somes river basin in Romania were investigated with regard to chlorine practice and DBP formation (trihalomethanes (THMs)). Laboratory kinetic studies were also performed to investigate whether there is a relationship between raw water dissolved organic matter, residual chlorine, water temperature and THM formation. Materials and methods Drinking water samples were collected from different sampling points in the water treatment plant (WTP) from Gilau and the corresponding distribution system in Cluj-Napoca and also from Beclean, Dej and Jibou WTPs. The water samples were collected once a month from July 2006 to November 2007 and stored in 40-mL vials closed with Teflon lined screw caps. Water samples were preserved at 4°C until analysis after sodium thiosulfate (Na 2 S 2 O 3 ) had been added to quench residual chlorine. All samples were analysed for THMs using headspace GC-ECD between 1 and 7 days after sampling. The sample (10 mL) was filled into 20-mL headspace vials and closed with a Teflon-lined screw cap. Thereafter, the samples were equilibrated in an oven at 60°C for 45 min. The headspace (1 mL) was then injected into the GC (Cyanopropylphenyl Polysiloxane column, 30 m×53 mm, 3μm film thickness, Thermo Finnigan, USA). The MDLs for THMs were determined from the standard deviation of eight standards at 1μg/L. The MDLs for CHCl 3 , CHBrCl 2 , CHBr 2 Cl and CHBr 3 were 0.3, 0.2, 0.3 and 0.6 μg/L, respectively. All kinetic laboratory studies were carried out only with water from the WTP Gilau. The experiments were conducted under two conditions: baseline conditions (pH7, 21°C, 2.5 mg/L Cl 2 ) to gain information about the change of the organic matter in the raw water and seasonally variable conditions
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.