Summary Tissue homeostasis requires somatic stem cell maintenance; however, mechanisms regulating this process during organogenesis are not well understood. Here, we identify asymmetrically renewing basal and luminal stem cells in the mammary end bud. We demonstrate that SLIT2/ROBO1 signaling regulates the choice between self-renewing asymmetric cell divisions (ACDs) and expansive symmetric cell divisions (SCDs) by governing Inscuteable (mInsc), a key member of the spindle orientation machinery, through the transcription factor Snail (SNAI1). Loss of SLIT2/ROBO1 signaling increases SNAI1 in the nucleus. Overexpression of SNAI1 increases mInsc expression, an effect that is inhibited by SLIT2 treatment. Increased mInsc does not change cell proliferation in the mammary gland (MG), but instead results in more basal cap cells dividing via SCD, at the expense of ACD, leading to more stem cells and larger outgrowths. Together, our studies provide insight into how the number of mammary stem cells is regulated by the extracellular cue, SLIT2.
Satellite glia are the major glial type found in sympathetic and sensory ganglia in the peripheral nervous system, and specifically, contact neuronal cell bodies. Sympathetic and sensory neurons differ in morphological, molecular, and electrophysiological properties. However, the molecular diversity of the associated satellite glial cells remains unclear. Here, using single-cell RNA sequencing analysis, we identify five different populations of satellite glia from sympathetic and sensory ganglia. We define three shared populations of satellite glia enriched in immune-response genes, immediate-early genes, and ion channels/ECM-interactors, respectively. Sensory-and sympathetic-specific satellite glia are differentially enriched for modulators of lipid synthesis and metabolism. Sensory glia are also specifically enriched for genes involved in glutamate turnover. Furthermore, satellite glia and Schwann cells can be distinguished by unique transcriptional signatures. This study reveals the remarkable heterogeneity of satellite glia in the peripheral nervous system.
Satellite glia are the major glial type found in ganglia of the peripheral nervous system and wrap around cell bodies of sympathetic and sensory neurons that are very diverse. Other than their close physical association with peripheral neurons, little is known about this glial population. Here, we performed single cell RNA sequencing analysis and identified five different populations of satellite glia from sympathetic and sensory ganglia. We identified three shared populations of satellite glia enriched in immune-response genes, immediate-early genes and ion channels/ECM-interactors, respectively. Sensory- and sympathetic-specific satellite glia are differentially enriched for modulators of lipid synthesis and metabolism. Sensory glia are also specifically enriched for genes involved in glutamate turnover. Further, satellite glia and Schwann cells can be distinguished by unique transcriptional signatures. This study reveals remarkable heterogeneity of satellite glia in the peripheral nervous system.
Satellite glia are the major glial cells in sympathetic ganglia, enveloping neuronal cell bodies. Despite this intimate association, the extent to which sympathetic functions are influenced by satellite glia in vivo remains unclear. Here, we show that satellite glia are critical for metabolism, survival, and activity of sympathetic neurons and modulate autonomic behaviors in mice. Adult ablation of satellite glia results in impaired mTOR signaling, soma atrophy, reduced noradrenergic enzymes, and loss of sympathetic neurons. However, persisting neurons have elevated activity, and satellite glia-ablated mice show increased pupil dilation and heart rate, indicative of enhanced sympathetic tone. Satellite glia-specific deletion of Kir4.1, an inward-rectifying potassium channel, largely recapitulates the cellular defects observed in glia-ablated mice, suggesting that satellite glia act in part via K+-dependent mechanisms. These findings highlight neuron-satellite glia as functional units in regulating sympathetic output, with implications for disorders linked to sympathetic hyper-activity such as cardiovascular disease and hypertension.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.