Mustard oil (MO) is a plant-derived irritant that has been extensively used in experimental models to induce pain and inflammation. The noxious effects of MO are currently ascribed to specific activation of the cation channel TRPA1 in nociceptive neurons. In contrast to this view, we show here that the capsaicin receptor TRPV1 has a surprisingly large contribution to aversive and pain responses and visceral irritation induced by MO. Furthermore, we found that this can be explained by previously unknown properties of this compound. First, MO has a bimodal effect on TRPA1, producing current inhibition at millimolar concentrations. Second, it directly and stably activates mouse and human recombinant TRPV1, as well as TRPV1 channels in mouse sensory neurons. Finally, physiological temperatures enhance MO-induced TRPV1 stimulation. Our results refute the dogma that TRPA1 is the sole nocisensor for MO and motivate a revision of the putative roles of these channels in models of MO-induced pain and inflammation. We propose that TRPV1 has a generalized role in the detection of irritant botanical defensive traits and in the coevolution of multiple mammalian and plant species.
Peptide nucleic acids (PNAs) are artificial, oligonucleotides analogues, where the sugar-phosphate backbone has been substituted with a peptide-like N-(2-aminoethyl)glycine backbone. Because of their inherent benefits, such as increased stability and enhanced binding affinity toward DNA or RNA substrates, PNAs are intensively studied and considered beneficial for the fields of materials and nanotechnology science. Herein, we designed cationic polypeptide-functionalized, 10-mer PNAs, and demonstrated the feasible detection of hybridization with short, complementary DNA substrates, following analytes interaction with the vestibule entry of an α-hemolysin (α-HL) nanopore. The opposite charged state at the polypeptide-functionalized PNA-DNA duplex extremities, facilitated unzipping of a captured duplex at the lumen entry of a voltage-biased nanopore, followed by monomers threading. These processes were resolvable and identifiable in real-time, from the temporal profile of the ionic current through a nanopore accompanying conformational changes of a single PNA-DNA duplex inside the α-HL nanopore. By employing a kinetic description within the discrete Markov chains theory, we proposed a minimalist kinetic model to successfully describe the electric force-induced strand separation in the duplex. The distinct interactions of the duplex at either end of the nanopore present powerful opportunities for introducing new generations of force-spectroscopy nanopore-based platforms, enabling from the same experiment duplex detection and assessment of interstrand base pairing energy.
The study of factors essential for protein-peptide interactions and protein pore-mediated peptide transport are of particular relevance in biology. Wild-type α-hemolysin was adopted as a "nanoreactor" in which perturbations of the current through a protein containing a lumen-residing, aryl-capped antimicrobial peptide were seen for the first time and studied at the single-molecule level. Energy and steric considerations hint that Met-aryl interactions between aromatic residues placed at a peptide's extremities and any of the methionines lining the α-hemolysin constriction region may be the primary cause of peptide stabilization within the lumen and may be particularly important to the peptide-α-hemolysin interaction.
TRPA1 is a nonselective cation channel activated by a wide variety of noxious chemicals. Intriguingly, several TRPA1 modulators induce a bimodal effect, activating the channel at micromolar concentrations and inhibiting it at higher concentrations. Here we report the bimodal action of cinnamaldehyde (CA) and camphor, which are thus far reported as agonist and antagonist of TRPA1, respectively. Whole-cell patch-clamp experiments in TRPA1-expressing CHO cells revealed that, as previously reported, extracellular application of 100 μM CA strongly stimulates TRPA1 currents. However, subsequent application of 3 mM CA induced fast and reversible current inhibition. Application of 3 mM CA in basal conditions induced a rather small current increase, followed by current inhibition and a dramatic rebound of current amplitude upon washout. These observations are reminiscent of the effects of TRPA1 modulators having bimodal effects, e.g., menthol and nicotine. In line with previous reports, extracellular application of 1 mM camphor induced a decrease of basal TRPA1 currents. However, the current amplitude showed a significant overshoot upon washout. On the other hand, application of 100 μM camphor induced a 3-fold increase of the basal current amplitude measured at -75 mV. The bimodal effects of CA and camphor on TRPA1 were also observed in microfluorimetric measurements of intracellular Ca(2+) in intact TRPA1-expressing CHO cells and in primary cultures of mouse dorsal root ganglion neurons. These findings are essential for the understanding of the complex sensory properties of these compounds, as well as their utility when used to study the pathophysiological relevance of TRPA1.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.