International initiatives aimed at generating genomic resources, and particularly reference genomes, have flourished in recent years. Some focus on specific taxa, such as the Vertebrate Genomes Project, Bird Genome 10K Project, Bat1K Project, Global Invertebrate Genomics Alliance, 10 000 Plant Genomes Project, and 1000 Fungal Genomes project. Others focus on geographic regions, such as the California Conservation Genomics Project, Darwin Tree of Life for Britain and Ireland, Catalan Initiative for the Earth BioGenome Project in the Catalan territories, Endemixit in Italy, Norwegian Earth Biogenome Project, and SciLifeLab in Sweden, on applications such as the LOEWE Translational Biodiversity Genomics in Germany, or on ecological systems such as the Aquatic Symbiosis Genomics project. Collectively part of the Earth BioGenome Project (EBP), in Europe these initiatives are organized under the umbrella of the European Reference Genome Atlas (ERGA). A genome atlas of European biodiversityERGA is a pan-European scientific response to the current threats to biodiversity. Approximately one fifth of the ~200 000 eukaryotic species present in Europe can be inferred to be at risk of extinction according to the International Union for Conservation of Nature (IUCN) Red List classification (this estimate only considers the assessed species; https://www.iucn.org/regions/europe/our-work/biodiversity-conservation/european-red-list-threatened-species).ERGA aims to generate reference genomes of European eukaryotic species across the tree of life, including threatened, endemic, and keystone species, as well as pests and species important to agriculture, fisheries, and ecosystem function and stability. ERGA builds upon current genomic consortia in EU member states, EU Associated Countries, representatives of other countries within the European bioregion, and international collaborators. These reference genomes will address fundamental and applied questions in conservation, biology, and health. ERGA seeks to alert the EU about the potential of conservation genomics, and particularly the role of reference genomes, in biodiversity assessment, conservation strategies, and restoration efforts.
Background Mango, Mangifera indica L., an important tropical fruit crop, is grown for its sweet and aromatic fruits. Past improvement of this species has predominantly relied on chance seedlings derived from over 1000 cultivars in the Indian sub-continent with a large variation for fruit size, yield, biotic and abiotic stress resistance, and fruit quality among other traits. Historically, mango has been an orphan crop with very limited molecular information. Only recently have molecular and genomics-based analyses enabled the creation of linkage maps, transcriptomes, and diversity analysis of large collections. Additionally, the combined analysis of genomic and phenotypic information is poised to improve mango breeding efficiency. Results This study sequenced, de novo assembled, analyzed, and annotated the genome of the monoembryonic mango cultivar ‘Tommy Atkins’. The draft genome sequence was generated using NRGene de-novo Magic on high molecular weight DNA of ‘Tommy Atkins’, supplemented by 10X Genomics long read sequencing to improve the initial assembly. A hybrid population between ‘Tommy Atkins’ x ‘Kensington Pride’ was used to generate phased haplotype chromosomes and a highly resolved phased SNP map. The final ‘Tommy Atkins’ genome assembly was a consensus sequence that included 20 pseudomolecules representing the 20 chromosomes of mango and included ~ 86% of the ~ 439 Mb haploid mango genome. Skim sequencing identified ~ 3.3 M SNPs using the ‘Tommy Atkins’ x ‘Kensington Pride’ mapping population. Repeat masking identified 26,616 genes with a median length of 3348 bp. A whole genome duplication analysis revealed an ancestral 65 MYA polyploidization event shared with Anacardium occidentale. Two regions, one on LG4 and one on LG7 containing 28 candidate genes, were associated with the commercially important fruit size characteristic in the mapping population. Conclusions The availability of the complete ‘Tommy Atkins’ mango genome will aid global initiatives to study mango genetics.
23Speciation depends on the (local) reduction of recombination between the genomes of partially 24 isolated, diverging populations. Chromosomal rearrangements and generic molecular 25 mechanisms in the genome affect the recombination rate thereby constraining the efficacy of 26 (linked) selection. This can have profound impacts on trait divergence, in particular on complex 27 phenotypes associated with speciation by sexual selection. Because of the obligate co-evolution 28 of traits and preferences in sexual communication signals, it may be expected that these co-29 adapted gene complexes reside in regions of low recombination, because of the increased 30 potential for linked selection. Here we test this hypothesis in Laupala, a genus of crickets 31 distributed across the Hawaiian archipelago that underwent recent and rapid speciation. We 32 generate three dense linkage maps from interspecies crosses and use the linkage information to 33 anchor a substantial portion of a de novo genome assembly to chromosomes. Local 34 recombination rates were then estimated as a function of the genetic and physical distance of 35 anchored markers. These data provide important genomic resources for Orthopteran model 36 systems in molecular biology. In line with expectations based on the species' recent divergence 37 and successful interbreeding in the lab, the linkage maps are highly collinear and show no 38 evidence for large scale chromosomal rearrangements. Contrary to our expectations, a genomic 39 region where a male song QTL peak co-localizes with a female preference QTL peak was not 40 associated with particularly low recombination rates. This study shows that trait-preference co-41 evolution in sexual selection is not necessarily constrained by local recombination rates. 42
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.