A series of 7-aryl- and 7-hetaryl-7-deazaadenosines was prepared by the cross-coupling reactions of unprotected or protected 7-iodo-7-deazaadenosines with (het)arylboronic acids, stannanes, or zinc halides. Nucleosides bearing 5-membered heterocycles at the position 7 exerted potent in vitro antiproliferative effects against a broad panel of hematological and solid tumor cell lines. Cell cycle analysis indicated profound inhibition of RNA synthesis and induction of apoptosis in treated cells. Intracellular conversion to triphosphates has been detected with active compounds. The triphosphate metabolites showed only a weak inhibitory effect on human RNA polymerase II, suggesting potentially other mechanisms for the inhibition of RNA synthesis and quick onset of apoptosis. Initial in vivo evaluation demonstrated an effect of 7-(2-thienyl)-7-deazaadenine ribonucleoside on the survival rate in syngeneic P388D1 mouse leukemia model.
7-(2-Thienyl)-7-deazaadenosine (AB61) showed nanomolar cytotoxic activities against various cancer cell lines but only mild (micromolar) activities against normal fibroblasts. The selectivity of AB61 was found to be due to inefficient phosphorylation of AB61 in normal fibroblasts. The phosphorylation of AB61 in the leukemic CCRF-CEM cell line proceeds well and it was shown that AB61 is incorporated into both DNA and RNA, preferentially as a ribonucleotide. It was further confirmed that a triphosphate of AB61 is a substrate for both RNA and DNA polymerases in enzymatic assays. Gene expression analysis suggests that AB61 affects DNA damage pathways and protein translation/folding machinery. Indeed, formation of large 53BP1 foci was observed in nuclei of AB61-treated U2OS-GFP-53BP1 cells indicating DNA damage. Random incorporation of AB61 into RNA blocked its translation in an in vitro assay and reduction of reporter protein expression was also observed in mice after 4-hour treatment with AB61. AB61 also significantly reduced tumor volume in mice bearing SK-OV-3, BT-549, and HT-29 xenografts. The results indicate that AB61 is a promising compound with unique mechanism of action and deserves further development as an anticancer agent.
Adenosine kinase (ADK) from Mycobacterium tuberculosis (Mtb) was selected as a target for design of antimycobacterial nucleosides. Screening of 7-(het)aryl-7-deazaadenine ribonucleosides with Mtb and human (h) ADKs and testing with wild-type and drug-resistant Mtb strains identified specific inhibitors of Mtb ADK with micromolar antimycobacterial activity and low cytotoxicity. X-ray structures of complexes of Mtb and hADKs with 7-ethynyl-7-deazaadenosine showed differences in inhibitor interactions in the adenosine binding sites. 1D (1)H STD NMR experiments revealed that these inhibitors are readily accommodated into the ATP and adenosine binding sites of Mtb ADK, whereas they bind preferentially into the adenosine site of hADK. Occupation of the Mtb ADK ATP site with inhibitors and formation of catalytically less competent semiopen conformation of MtbADK after inhibitor binding in the adenosine site explain the lack of phosphorylation of 7-substituted-7-deazaadenosines. Semiempirical quantum mechanical analysis confirmed different affinity of nucleosides for the Mtb ADK adenosine and ATP sites.
Myrosinase, a thioglucoside glucohydrolase, is the only enzyme able to hydrolyse glucosinolates, a unique family of molecules bearing an anomeric O-sulfated thiohydroximate function. Non-hydrolysable myrosinase inhibitors have been devised and studied for their biological interaction. Diverse modifications of the O-sulfate moiety did not result in a significant inhibitory effect, whereas replacing the D-glucopyrano residue by its carba-analogue allowed inhibition to take place. X-Ray experiments carried out after soaking allowed for the first time inclusion of a non-hydrolysable inhibitor inside the enzymatic pocket. Structural tuning of the aglycon part in its pocket is being used as a guide for the development of simplified and more potent inhibitors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.