Purpose Oncogenic fusions consisting of FGFR and TACC are present in a subgroup of glioblastoma (GBM) and other human cancers and have been proposed as new therapeutic targets. We analyzed frequency, molecular features of FGFR-TACC fusions, and explored the therapeutic efficacy of inhibiting FGFR kinase in GBM and grade-II–III glioma. Experimental Design Overall, 795 gliomas (584 GBM, 85 grade-II–III with wild-type and 126 with IDH1/2 mutation) were screened for FGFR-TACC breakpoints and associated molecular profile. We also analyzed expression of the FGFR3 and TACC3 components of the fusions. The effects of the specific FGFR inhibitor JNJ-42756493 for FGFR3-TACC3-positive glioma were determined in preclinical experiments. Two patients with advanced FGFR3-TACC3-positive GBM received JNJ-42756493 and were assessed for therapeutic response. Results Three of 85 IDH1/2 wild type (3.5%) but none of 126 IDH1/2 mutant grade-II–III glioma harbored FGFR3-TACC3 fusions. FGFR-TACC rearrangements were present in 17 of 584 GBM (2.9%). FGFR3-TACC3 fusions were associated with strong and homogeneous FGFR3 immunostaining. They are mutually exclusive with IDH1/2 mutations and EGFR amplification whereas co-occur with CDK4 amplification. JNJ-42756493 inhibited growth of glioma cells harboring FGFR3-TACC3 in vitro and in vivo. The two patients with FGFR3-TACC3 rearrangements who received JNJ-42756493 manifested clinical improvement with stable disease and minor response, respectively. Conclusions RT-PCR-sequencing is a sensitive and specific method to identify FGFR-TACC-positive patients. FGFR3-TACC3 fusions are associated with uniform intra-tumor expression of the fusion protein. The clinical response observed in the FGFR3-TACC3-positive patients treated with a FGFR inhibitor supports clinical studies of FGFR inhibition in FGFR-TACC-positive patients.
Purpose: Our objective was to identify the genetic changes involved in primary central nervous system lymphoma (PCNSL) oncogenesis and evaluate their clinical relevance.Experimental Design: We investigated a series of 29 newly diagnosed, HIV-negative, PCNSL patients using high-resolution single-nucleotide polymorphism (SNP) arrays (n ¼ 29) and whole-exome sequencing (n ¼ 4) approaches. Recurrent homozygous deletions and somatic gene mutations found were validated by quantitative real-time PCR and Sanger sequencing, respectively. Molecular results were correlated with prognosis.Results: All PCNSLs were diffuse large B-cell lymphomas, and the patients received chemotherapy without radiotherapy as initial treatment. The SNP analysis revealed recurrent large and focal chromosome imbalances that target candidate genes in PCNSL oncogenesis. The most frequent genomic abnormalities were (i) 6p21.32 loss (HLA locus), (ii) 6q loss, (iii) CDKN2A homozygous deletions, (iv) 12q12-q22, and (v) chromosome 7q21 and 7q31 gains. Homozygous deletions of PRMD1, TOX, and DOCK5 and the amplification of HDAC9 were also detected. Sequencing of matched tumor and blood DNA samples identified novel somatic mutations in MYD88 and TBL1XR1 in 38% and 14% of the cases, respectively. The correlation of genetic abnormalities with clinical outcomes using multivariate analysis showed that 6q22 loss (P ¼ 0.006 and P ¼ 0.01) and CDKN2A homozygous deletion (P ¼ 0.02 and P ¼ 0.01) were significantly associated with shorter progression-free survival and overall survival.Conclusions: Our study provides new insights into the molecular tumorigenesis of PCNSL and identifies novel genetic alterations in this disease, especially MYD88 and TBL1XR1 mutations activating the NF-kB signaling pathway, which may be promising targets for future therapeutic strategies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.