Diabetes is associated with a dramatic mortality rate due to its vascular complications. Chronic hyperglycemia in diabetes leads to enhanced glycation of erythrocytes and oxidative stress. Even though erythrocytes play a determining role in vascular complications, very little is known about how erythrocyte structure and functionality can be affected by glycation. Our objective was to decipher the impact of glycation on erythrocyte structure, oxidative stress parameters and capacity to interact with cultured human endothelial cells.
In vitro
glycated erythrocytes were prepared following incubation in the presence of different concentrations of glucose. To get insight into the
in vivo
relevance of our results, we compared these data to those obtained using red blood cells purified from diabetics or non-diabetics. We measured erythrocyte deformability, susceptibility to hemolysis, reactive oxygen species production and oxidative damage accumulation. Altered structures, redox status and oxidative modifications were increased in glycated erythrocytes. These modifications were associated with reduced antioxidant defence mediated by enzymatic activity. Enhanced erythrocyte phagocytosis by endothelial cells was observed when cultured with glycated erythrocytes, which was associated with increased levels of phosphatidylserine—likely as a result of an eryptosis phenomenon triggered by the hyperglycemic treatment. Most types of oxidative damage identified in
in vitro
glycated erythrocytes were also observed in red blood cells isolated from diabetics. These results bring new insights into the impact of glycation on erythrocyte structure, oxidative damage and their capacity to interact with endothelial cells, with a possible relevance to diabetes.
The clearance of erythrocytes may be carried out by vascular cells in atherosclerotic conditions. • Phagocytosis by endothelial cells is more pronounced with aged and glycated erythrocytes.• Endothelial phagocytosis is enhanced with T2D erythrocytes.• Interactions between erythrocytes and endothelial cells occur in vivo, in atherothrombotic/diabetic conditions.
Clinical benefit for mechanical thrombectomy (MT) in stroke was recently demonstrated in multiple large prospective studies. Acute hyperglycemia (HG) is an important risk factor of poor outcome in stroke patients, including those that underwent MT. The aim of this therapy is to achieve a complete reperfusion in a short time, given that reperfusion damage is dependent on the duration of ischemia. Here, we investigated the effects of acute HG in a mouse model of ischemic stroke induced by middle cerebral artery occlusion (MCAO). Hyperglycemic (intraperitoneal [ip] injection of glucose) and control (ip saline injection) 10-week male C57BL6 mice were subjected to MCAO (30, 90, and 180 min) followed by reperfusion obtained by withdrawal of the monofilament. Infarct volume, hemorrhagic transformation (HT), neutrophil infiltration, and neurological scores were assessed at 24 hr by performing vital staining, ELISA immunofluorescence, and behavioral test, respectively. Glucose injection led to transient HG (blood glucose = 250-390 mg/dL) that significantly increased infarct volume, HT, and worsened neurological outcome. In addition, we report that HG promoted blood-brain barrier disruption as shown by hemoglobin accumulation in the brain parenchyma and tended to increase neutrophil extravasation within the infarcted area. Acute HG increased neurovascular damage for all MCAO durations tested. HTs were observed as early as 90 min after ischemia under hyperglycemic conditions. This model mimics MT ischemia/reperfusion and allows the exploration of brain injury in hyperglycemic conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.