Using bio-based polymers to replace of polymers from petrochemicals in the manufacture of textile fibers is a possible way to improve sustainable development for the textile industry. Polylactic acid (PLA) is one of the available bio-based polymers. One way to improve the fire behavior of this bio-based polymer is to add an intumescent formulation mainly composed of acid and carbon sources. In order to optimize the amount of bio-based product in the final material composition, lignin from wood waste was selected as the carbon source. Different formulations of and/or ammonium polyphosphate (AP) were prepared by melt extrusion and then hot-pressed into sheets. The thermal properties (thermogravimetric analyses (TGA) and differential scanning calorimetry (DSC)) and fire properties (UL-94) were measured. The spinnability of the various composites was evaluated. The mechanical properties and physical aspect (microscopy) of PLA multifilaments with lignin (LK) were checked. A PLA multifilament with up to 10 wt % of intumescent formulation was processed, and the fire behavior of PLA fabrics with lignin/AP formulation was studied by cone calorimeter.
Lignin is a highly abundant bio-polymeric material that constitutes cellulose one of major component in cell wall of woody plants. Alternatively, large quantity of lignin is yearly available from numerous pulping and paper industries; this is the key point that justifies its large use for industrial applications. Lignin could be one of the most essential and sustainable bio-resources as raw material for the development of environmentally friendly polymer composite. Owing to its huge chemical structure, lignin can provide additional functionality such as filler, reinforcing agent, compatibilizer, stabilizer, etc. In this study, the fire retardant functionality of lignin has been employed in polymeric materials. Due to high charring capability, lignin is effectively used as carbon source in combination with other flame retardants for designing the intumescent system for polymeric materials. Further in this, several articles related to lignin-based intumescent are reviewed and interesting work formulation as well as meaningful results achieved in the flame retardancy are discussed. More attention is given to the studies concerning the use of current intumescent systems for textile applications by means of coating on fabric/nonwoven and melt blending in bulk polymers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.